회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00018415498
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
백분위로 89 93 3 98 98인데 진학사에서 중대 경영이 3칸이 뜨던데.......
-
왜 아직도 2021 새해를 비는겁니까
-
1교시부터 7교시까지 반이 시끄러워서 수학만 하고있는 07정시파이터입니다.....
-
1학기 복학하고 2
2학기 반수로 볼까 ....
-
텔스 중경외시권 0
지금 얼마나믿어도됨? 99ㅇㅈㄹ나는데
-
사회문화현상이랑 자연현상 구별이 잘 안되는데 어떡함
-
ㅈㄱㄴ
-
뭐 더 추천함?이유도 적어주면 ㄱㅅ
-
요즘 리겜이 잘 안되네 12
늙었나
-
정말 공부량에 비례하게 성적이 올랐는지 생각해보면 거의 아닐텐데 이십대 초반을...
-
애니 뭐보지 5
오늘 시험 끝나고 진격거 파이널 보고 나서 뭐보지... 주로 럽코 보는데 볼만한거...
-
문제 유형 사탐중에선 제일 개 ㅈ같은데 그래도 참고하시나
-
지금이 1억3천인데 어디까지 갈지 궁금하네요 또 여긴 주식시장이랑 다르게 각종...
-
오르비는 26티콘으로 그때가 마지막 기회임을 예언한거임....
-
1. 방멱 (power)원 O와 점P가 주어졌을 때 점 P를 지나는 직선과 O의...
-
각자 점심 먹고 홍대쪽에서 만날건데 머해야됨 ㅠㅠ 둘다 라쿤 좋아해서 라쿤카페도 생각중 머하지 진심
-
있음? 강기원 현강 가려는데 뉴런에 없는 내용도 알려줌? 실전적으로 잘 체화할 수...
-
오늘이 11월 29일이니까 태양의 적경이 대략 16h? 저기 보이는 저 별자리...
-
어디갈수있나요
-
갑자기 궁금한게 2
의대 25학번들은 선배들이 꺼리거나 안좋게 보려나
-
님들은 취미가 뭐에요? 14
스트레스 푸는 취미가 있으신가요?
-
대학가기전에 n수밖으면서 미기확을 셋다 즐겨보라는게 아닐까 기하 찐 고민되네 미적...
-
코 수술 해라
-
ㅈㄱㄴ
-
마크는 알겠는데 너무 조용하네
-
낄낄낄
-
성형비용 근데 1
눈코 다합치면 500정도 나올텐데 시발 이거 어케 내냐 비용… 이거말고도 보증금도...
-
첨에는 그냥 내가 여기까진가보다하고 받아들이려했지만 노력한거에비해 성적이 잘 나오지...
-
성격상 예전부터 '뭔가 무지성인 거 같은 윗사람의 지시에 아무 생각 없이 따르기'를 잘 못했음...
-
수능 진입 희망하시는 분들 궁금한 것들 여쭤봐주시면 아는 범위 안에서 답변해드리고...
-
근데 병원 가고싶어도 부모 동의 필요해서 아직 못감
-
1. 완전사변형 (complete quadrilateral)이렇게 직선 4개와 그...
-
멘탈 개박살난거 기억나뇨 ㅋㅋㅋ 쉬운 문제는 좀 풀만한데 좀만 어려워지면 그냥 하루...
-
ㅈㅔ 팔자도 같이 필 수 있었을까요
-
사반수하면 2
낭만의 물2 생2 갈길게
-
떡볶이존나먹고싶 3
오몬오온노ㅗㅗ
-
스튜어트 정리 사교좌표계 시소 정리 등등 잡기술 마늠 사실 아는 잡기술은 별로 없음뇨
-
나 장례식하면 부모님만 계실듯
-
Fact 5
이대 다니고 있는 애들 보통 생각이 자기들 학교가 중앙대급 혹은 그 이상이라...
-
42223이고 생1 지1 했었습니다
-
각각 하루평균 몇시간정도 하셨나요?
-
26수분감 끝내고 바로 엔제실모돌리기vs수분감끝내고 26뉴런듣기 둘중하나...
-
간장 새우 먹고 싶다 새우 튀김 먹고 싶다 크아아아아악
-
뭘로 갈까요? 이번 수능 생지 31 인데 유전이 저랑은 너무 안맞는 거 같아서...
-
면접망침 멘탈 5
어제 면접 개망쳣는데 자꾸 그 장면이 반복재생됨 자살뛰러감 시발!!!ㅜㅜ
-
왜 조회수 높냐 0
슈냥 방송 안 켜있는데
-
현역 6(언매) 9(화작) 수능(화작) 원점수 100 1~2월에 단기과외 바짝 하고...
1빠
쌤 저번에 이뿌게댓글단사람 누구에오..?
그거 오르비에다 올려서 물어보려고 ㅎㅎㅎ
물2최고
뭘 좀아시는분이네요 ㅎㅎ
요약
1) 풀이..... 여기까진 인정하더라도 여기서부터는 비약이다.
2) 이렇게 해보자.
3) 불연속 함수여도 적분된다.
+ 계산도 너무 복잡하다. 그니까 적분식의 모양 바꾸고 추론해라.
끗
삐약삐약
엥? 위에 물2랑 다른분이었구나...ㅋㅋ;;; 같은분인줄...
그러니까 개꿀잼 물2 한 번 해보실래요??
ㅎㅎㅎㅎ
ㄱㅁ
쌤 아니면 불연속 함수에서 차라리 구간나눠서 적분설정한다하면 괜찬지안나요??
아래댓글참조 ㅎㅎㅎ
풀이 잘 들었습니다 감사합니다 !!
질문이 있는데 불연속함수가 적분가능하다는게 고등교육과정상으로 직관적일 수 있을까요..?
연속조건을 붙인 것은 오히려 해석학에서 리만적분을 정의할때 ‘countable 한 무한개의 불연속점’ 을 설명하기 어려워서라고 생각하는데 어떻게 생각하시나요??
그 역시 일리있는 말입니다
그렇지만 위의 내용의 포인트는 이과 적분에서 부분적분 하다보면 불연속 점이 한두개 나오기도 하는데 그경우 일일이 구간을 나눈 필요는 없다는 이야기 입니다
답변 감사합니다 ㅎㅎ
:)
가나형 표시해주면 더욱 감사
ㅇㅋㅇㅋㅇㅋ
문과 서러워서 우러욧
결론:이걸 어떻게 시험장에서 푸냐?
최상위권과 극상위권과 운상위권을 변별
계속 생각하는 거지만 이런 문제 출제하는 교수들은 진짜 ㄷㄷㄷ 대단하네요
하지만 이미 사교육 출제 시스템이 평가원 출제 시스템을 앞섰다고들 합니다. 자본주의의 위력이란... ㄷㄷㄷ
역시 돈이 최고네요 ㅋㅋㅋ
그러게요.. 어쩔수 없나봐요...;;
와우... 수준이 정말 높군여
죠아요
어디서 보나요?
무엇을요?
아 이이폰으로 접속하니까 안뜨는거엿네요!
ㅎㅎ 넵 1시간 짜리니까 각잡고 보시길...! ㅎㅎ
181130은 정말 ㄷㄷㄷ
굳이 이런문제를 내야하는지..? 너무어렵. 열심히 공부해도 풀 수 없는 문제 라는 느낌을 주려는게 의도인가
추론적해석 연습하라는 의도겠죠 ... ㅠㅠ
제가 듣는 인강쌤도 cos(x)가 적분하기 어렵지 않고 f(x)가 결국 연속함수이고 구간나눠서 미분하면 +1아니면 -1이어서 은근 괜찮아서 이렇게하면 풀이가 그렇게 길지 않다고 하시더라고요
저도 30번 문제를 계속 보다가 많은 강사분들이 극대*극대=극대 극소*극대=극소 라는 식으로 당연히 그렇게 될거다라는 거라고 시험장에서는 엄밀한 풀이가 시간상 부족했으면 이렇게 생각하고 넘어갔어야했다는 식으로 얘기해서 아리송했었는데
제가 혼자서 고민해보니까 극대에서 선대칭인 움직이는 함수(f(t)) 곱하기 극값에서 선대칭인 함수(g(x) 30번의 경우는 cosx)는 g(x)가 극값인데서 극대*극대=극대 극대*극소=극소 인거같더라고요 만약 f(t)나 g(x)가 극값에서 대칭이 아니면 f(t)*g(x)는 각각의 극값에서 만나는 지점에서 극값이 아니더라고요 이렇게 생각해도 될까요?
- 그 인강쌤이 누구신가? (그냥 궁금해서)
- 님이 말씀하신것은 부호를 양수로 고정하면 맞는 말인데 어차피 피적분함수의 극대극소를 판단하는 것이 아니라 넓이의 변화를 판단하는 거라서 핀트가 약간 다른것 같습니다. 그리고 위의 문제에서 g(x)=f와 코사인의 곱의 정적분 인데 섞어서 쓰셔서 혼동되기도 합니다.
장영진선생님이요!
나형도 해주세요ㅠㅠ
나형도 애매한 부분이 있었나요? ㅠㅠ 없었던것 같아서..ㅠㅠ
지금 까지 공부하면서 유일하게 이문제만 도대체 풀라고낸건지 싶은생각이들고 다시 가도 못풀거같다라고 생각햇는데 쌤 두번째 풀이 듣고 아 이거구나 싶네요 이렇게 풀지않는이상 시험장에서 현실적으로 풀수없을거같아요 ㅋㅋ 감사합니다 쌤
쌤!! 염치없겠지만 수업 후기댓글보니까 작년 6평21번올해6평21 번도 0의차수로다가 개쭬게 알려주신다는데 이것도 이 30번문제처럼 영상짤막하게 올려주실생각없으신가요.? 쌤풀이가 너무 궁금해요ㅠㅠ미천한삼수생의바램입니다 ㅠㅠ
엌ㅋㅋㅋ 그건 그 전에 4시간정도 개념학습이 있어야 해요 ㅋㅋㅋ
와.. 유명한강사 해설강의는 다찾아봤는데 이강의가 짱이네용 ㅎ