대선형수학문제 질문입니다.
게시글 주소: https://orbi.kr/0001750541
대선형수학무문제 수열,행렬 관련해서 문제입니다. 도저히 closed(닫힌개념)과 bounded(유계개념) 이 이해가 안가네요. 답변좀 부탁드릴게요 감사합니다. 파일첨부했어요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
눈온당 0
-
출석부! 출석부 출석부! 지하철! 지하철 지하철! 공산당! 공산당 공산당! 진짜...
-
스타킹 0
찢기
-
이시간에
-
불면증.. 4
원하는 기상시간보다 45분이나 일찍일어나버렸다
-
잘까 4
흠
-
안자면 큰일날듯 1
옯붕이들 ㅂㅂ
-
2차 얼버잠 2
이젠 진짜 ㅃㅃ
-
동서연고. 1
무요.. 왜요.. 혼잣말이에요..
-
다시 했을 때 메디컬 가능성 얼마나 보시나요?
-
잘때가된건가 5
슬슬
-
발 300 11
손도 많이 큼
-
꾸준히 햇으면 꽤나 올렷을거 같은데 오랜만에 하려니 계속 같은 곳에서...
-
ㅅ..ㅂ 요즘에도 한달에 한번은 뛰다가 무조건 삐는 것 같다
-
키작은 사람이 6
큰 사람보단 끌림
-
마스터 등반 시작
-
응..
-
재밋는건같이해요
-
귀가 ㅇㅈ 2
사실 아까 퇴근하면서 찍었어요
-
키작으면 좋은점 4
애들이 귀엽다고함 헤헤
-
ㅋㅋ 난 작년에 2
공부하는거에도 기출이 잇엇음.한국 기출만 봤을 때2008년도부터 2023년도 기출된...
-
새르비 화력 테스트 18
유동인구 10명 넘을까?
-
팩트는 0
마이 베스또 프렌드들은 몇시간째 디코를 하며 롤을 하고 잇다는거임.지금도 디코에...
-
굿모닝 1
ㄱㅁㄴ
-
에휴이
-
오르비 굿밤 2
전 자러감
-
서버 어머같네요 0
ㅎㅎ
-
맞팔 구합니다 3
현역학생입니다 물리러에요
-
ㅇㅂㄱ 1
수업가야겠군
-
연구원인데 떼잉,,삼각함수랑 수열을 훨 잘함 지로함에 비하면
-
ㅇㅈ 13
새벽이니까 다행일듯 내 손임 펑~~
-
학벌딸 치고 싶어서 인거 같음 그냥 병신 한남 자존감 밑바닥 루저새끼라 뭐라도 하나...
-
안 맞게 공부를 하고 잇음 ㅋㅋ,,내 공부 이론대로 하는 공부가 좀 상당히 피곤함....
-
내 차단리스트 1
없음뇨
-
응.. 부러워..
-
침대에서 자면서 망상함
-
지로함 6
평가원에선 잘 모르겟는데 (어렵게 안 내서), N제같은거 보면 되게 재밋는 문제...
-
무슨 이미 의대 붙은 것마냥 의대 성적 되면 의대를 갈까 설대를 갈까? 의대 가면...
-
수강 신청 0
막 20학점씩 신청 해놓고 나중에 빼는 방법 좋나요? 예상대로 안될 때가 많으니...
-
기출 좋앗던거 3
241122 (개 잘 만든문제)121130 (함수의 증가속도, 아주 중요한 관점)...
-
국회증언법이랑 양곡법 이런거 비판하는 내용있으면 너무 그렇지??..
-
롤의정리 4
롤은 재밌다
-
공군 질받 9
암거나 ㄱㄱ
-
잘자용 16
배가 고파져서 블아 ost 158번 그레고리오 피아노 버전을 들으면서 이만 자야겠오요
-
성대바꿔
-
롤할사람 4
모집ㅂ중
-
241122. 5
진짜 딱 삼차함수여서 결정됨. 머지 진짜아주 멋잇음. 출제자랑 대화해보고 시픔
경제쪽인가요? 수학쪽 용어랑 아닌 것들이 막 섞여있어서, 전부를 다 설명드리긴 힘들 것 같네요.
일단 미묘한 문제가 있는데, 전체공간이 R²+ 인가요, 아니면 R² 인가요? 중요한 문제입니다.
예를 들어 Y, C, B는 모두 R²+ 에서 closed이지만, R²에서도 여전히 closed인 집합은 C밖에 없거든요.
뭐 bounded인 집합은 B밖에 없긴 하고, 이 성질은 R²+ 이냐 R²이냐에 의존하지 않긴 하지만요...
R2+ 가 맞습니다. 쪽지보냈습니다.ㅋ
참고문헌 : Principles of mathematical analysis 3rd edition, Walter Rudin
으잌
위의 책에 bounded와 closed란 개념이 간결하게 소개되어있습니다
굳이 쪽지까지 보내실 필요야...
R²+ 는 제 1사분면(1st quadrant)의 점들만 포함합니다. 즉 R²+ = { (x, y)∈R² : x, y > 0 } 으로 정의됩니다. 따라서 R² 와는 다르며, R² 의 한 open subset 중 하나입니다.
[방법 1] Y가 R²+ 에서 closed임을 보이는 가장 좋은 방법은, closed set의 연속함수에 의한 inverse image가 역시 closed임을 활용하는 것입니다. 구체적으로, f(x, y) = (√x) - y 로 두면 f(x, y)는 자명하게 연속함수가 되며, 따라서 닫힌 집합 [0, ∞) 의 f 에 의한 inverse image인 Y (직접 확인해보세요!) 는 closed set 이 됩니다.
[방법 2]
물론 직접 보일 수도 있지요. closed의 정의는 책마다 다르게 정의하곤 하지만, 크게 다음 두 가지가 있습니다.
(1) F의 원소들로 이루어진 임의의 수열 a(n)에 대하여, 만약 a(n)이 수렴하면 a(n)의 극한은 F에 속한다.
(2) F의 여집합이 open이다.
물론 둘은 동치입니다. (1)을 이용해서 증명하려면, a(n) = (x(n), y(n)) 이 (x, y) ∈ R²+ 로 수렴한다고 합시다. 그러면 a(n)은 Y 의 원소이므로, y(n) ≤ √x(n) 이 성립합니다. 이제 이 부등식에 극한을 취하면 y ≤ √x 이므로, (x, y) 역시 Y 의 점이 되고 따라서 Y는 closed입니다.
[방법 3]
아니면 (2)를 이용합시다. 즉, Y의 여집합 (R²+)-Y = { (x, y)∈R²+ : y > √x } 가 open임을 보입시다. 이 말은, (R²+)-Y 내의 임의의 점마다 그 적절한 open neighborhood가 존재하여 그 neighborhood가 (R²+)-Y 내에 속해야 합니다.
약간의 기교를 통해 이것이 참임을 보입시다. (x0, y0) 이 (R²+)-Y 내부의 임의의 한 점이라고 합시다. 그러면 y0 > √x0 이므로, y0 > c > √x0 를 만족하는 어떤 상수 c가 존재합니다. 이제 U = (0, c²)×(c, ∞) = { (x, y)∈R²+ : x < c², y > c } 으로 둡시다. 그러면 U 는 두 open interval 의 product이므로 U는 open이며, U 내부의 임의의 점 (x, y)는 √x < c < y 를 만족하므로 U 는 (R²+)-Y 의 open subset입니다. 그리고 마지막으로 U 는 x0 을 포함하지요. 따라서 U는 (x0, y0) 의 open neighborhood 이면서 (R²+)-Y 에 포함되므로, 우리가 원하는 바가 증명됩니다.
이제 Y가 bounded가 아님을 보입시다. 어떤 집합 S가 bounded라는 것은, 어떤 양수 M이 존재하여 S의 임의의 원소 x에 대해 |x| < M 임을 뜻합니다. 반대로, 어떤 집합 S가 bounded가 아니라는 것은, 임의의 양수 M에 대하여 S의 어떤 원소 x가 존재하여 |x| ≥ M 인 것입니다. 그런데 1보다 큰 임의의 실수 x에 대하여 (x, 1)은 항상 Y의 원소입니다. 그리고 |(x, 1)| = √(x² + 1) > x 이므로, 임의의 양수 M(>1)에 대하여 (M, 1) ∈Y 가 존재하여 |(M, 1)| > M 이 성립하고, 원하는 바가 증명됩니다.
솔직히 제가 이렇게 바리바리 증명을 적어보긴 했지만, 가장 좋은것은 본인이 직접 closed의 정의가 무엇이고, bounded의 정의가 무엇이며, 이것을 어떻게 주어진 집합에 끼워맞출 것인지를 고민해보는 것입니다. 스스로 개념을 잡고 고민하지 않으면 앞으로 비슷한 내용들이 아무리 많이 나와도 해결하기 힘들겠지요...