밑에 합성함수 문제요.
게시글 주소: https://orbi.kr/0001683534
lim_{t-> 20-a} f(t) = f(b)
여기서 x^3 + 3x^2 - a = g(x) 라 하면 이 함수는 연속이니
g(20-a) = f(b) 라는 식까지가 나오죠
여기서 f(b)를 g(x)로 표현해 주어야 clockwise 님이 쓰신 풀이를 적용할 수가 있는데요.
f(x)가 항상 g(x)와 같은 것이 아니기 때문에 경우를 다음과 같이 나누어야 하죠.
여기서 일이 복잡해집니다.
왜 나누어야 하는지를 간단하게 설명한다면, 두 경우에 해집합의 양상이 전혀 다르게 나타나니까 그렇습니다.
1) 모든 가능한 b값의 집합에 2를 포함하지 않는 a에 대하여
이 경우에는 clockwise 님이 쓰신 것을 그대로 활용해도 되겠네요.
f(b)=g(b) 라고 말할 수 있으므로 g(20-a) = g(b) 에서 b를 만족하는 값이 2개 이상이면 됩니다.
2) 가능한 b값의 집합이 2를 포함하는 a값에 대하여.
가능한 b값들 중 하나를 2로 가지는 a값들은 다음 식을 만족하는 모든 a값입니다.
g(20-a)=2
그 값이 실수라면 1개 혹은 2개, 그도 아니면 3개가 존재하겠죠.
여기서는 대충 치환해서 보니 3개가 존재하는 것 같네요. 그것을 a1, a2, a3이라고 하겠습니다.
a1의 경우에 대해 조건을 만족하는 b값이 몇개나 존재하는지를 살펴본다면
i) g(20-a1)=f(b) 에서, 일단 앞의 전제에 따라 b=2인 경우가 가능합니다.
ii) 그리고, b가 2가 아닌 경우를 살펴본다면 g(20-a1) = g(b) 를 만족하는 b값이 있겠죠.
해당 식을 만족하는 b값은 세 개 존재합니다.
20-a1, 20-a2, 20-a3 이렇게요.
따라서 이 때의 a1이 만들어내는, 조건을 만족시키는 b의 집합의 원소는 2개 이상입니다.
a1이 자연수이기만 하다면 해답 중 하나가 됩니다.
문제는 함수가 다른 형태로 잡혔을 때, 2번의 해답이 1번에 포함되지 않는 경우가 분명히 존재한다는 겁니다.
아래와 같은 예지요.
g(20-a)=2 의 근이 단 한 개밖에 나오지 않는 경우를 가정한다면
이 때의 a값을 a1이라고 합시다. 이 a1값은 i)과 같은 방법으로 구한 범위 안에 포함되지 않습니다.
하지만 g(20-a)=f(b) 에서 a=a1일 때 이 식을 만족하는 b값은 2개가 될 수 있습니다(하나일 수도 있습니다)
일단 b=2 로 f(b)=2 가 나오는 경우가 있을 것이고
b가 2가 아닐 때 g(20-a)=g(b) 에서 g(b)=2 가 나오는 b가 하나 있을 것입니다. 이 때 b=20-a가 됩니다.
a1이 18이 되지 않는 한 b값은 두 개가 존재하게 됩니다. 따라서 조건에 부합하죠.
여기서 주어진 함수는 분명 아래의 경우를 고민할 필요가 없지만
그 고민할 필요가 없다는 사실도 확인을 해야만 합니다. 그 경우까지 고려해야 완벽한 해답이 나오는 것이
보다 더 일반적인 경우니까요. 요는 모든 경우에서 이 경우는 특별히 2번을 고려할 필요가 없는 형태 중 하나라는 거죠.
b=2인 경우와 b가 2가 아닌 경우는 결과에 영향을 주든 안 주 든 이 문제를 풀 때 필연적으로
고민해야만 하는 부분이구요.
결론적으로 이 문제를 풀기 위해서는 b=2를 해집합으로 포함하는 경우의 a값들이 i) 에서 구한 것 안에
포함되는지 안 되는지를 구분해야 한다고 생각하는데요.
그러기 위해서 아래쪽과 같은 방법이 가능합니다.
첫번째로는 g(20-a)=2 를 만족하는 a값이 자연수가 아님을 보이거나
두 번째로는 g(20-a)=2 의 근이 하나가 아니라는 것을 보여야 합니다.
둘 중 하나라도 만족이 되면 답을 구하기 위해 복잡하게 생각하지 않고
clockwise 님의 풀이대로 바로 접근할 수 있네요.
하지만 여기서 테크닉 없이 둘 중의 하나라도 계산을 하려면 20-a의 3승을 포함한 복잡한 방정식을 정리한 후에
그 방정식의 실근이 대략적으로 어떻게 되는지를 보아야 합니다.
(실제로는 20-a를 t로 치환한 후에 방정식을 정리하고 남은 a를 20-t로 다시 바꾸어 놓으면
t가 정수값이 아니고 근이 3개이기 떄문에, a도 정수값이 아니고 근이 3개가 되기는 합니다.)
제대로 극한의 연속에 대해 공부했다면 정확하게 아 이런 부분이 문제다라고 금새 짚어낼 수는 없어도
분명히 문제가 있는 부분이 존재할 수밖에 없다는 걸 어렴풋이 느끼실 것 같은데요
제가 잘못 생각하고 있는 부분이 있는건지도 모르겠네요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
할 거 없어서 첨부터 책만 보고 독학하고 있는데 2차원 빗면 운동에서 빗면을...
-
지방 메디컬 0
집이 논 뷰임 ㅅㅂ ㅋㅋㅋㅋㅋ 인생 되는게 없다
-
더 시킴
-
대학새우차 0
22살에 차 사는거 어때요?
-
술게임 5
너무 어려워... 고래고래....ㅠㅠㅠ
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 1
논리싫증주의자는 관심이 없다
-
국영수기출문제집 0
빨더텅같이 풀로있는게좋나요 검더텅같이 유형별로있는게좋나요
-
개멋짐 ,,, 뽀뽀쪽! ㅈㅅ
-
술게임 2
몇개를 배운건지 셀수가 없을지경이네 ㅋㅋㅋ
-
제 친구 이야기입니다. 작수 높3인줄 알았는데, 성적표 보니까 3컷이더라고요....
-
돈'도' 부족하니 인생이 비참한걸까 아.......... 나는 정답을 알고있구나
-
6개월~1년 은 부담스러운데, 다들 그렇게한다고해놓고 1~2달하고...
-
물,개 라.방킴 6
설.의 걔 맞음...
-
유통업자랑 똑같음 중간마진올려치기
-
진짜 나 군대갔다간 죽어버릴거 같은데...
-
안녕하세요 현실적인 조언과 가능성 판단 부탁드립니다! 타학교 3-1까지 다니다가...
-
도함수가 제가 써둔거처럼 Lnx-3/2면 e루트e에서 극소 아닌가요?? 음->양...
-
QED
-
생노베들은 무조건 피하셈 너무 당연한 거 물어봐서 개꿀이겠네 하고 답변하면 계속...
-
ㅇㅈ 0
.
-
요즘은 걍 1급받는게 제일 나음
-
ㅅㅂ저 지금 충격으로 말이안나와요
-
일반물리학 따라갈 수 있나요?
-
그동안 씨빠지게 고생하다가 오~랜만에 정시퇴근 실화인고. 3/4달만인듯 ㅇㅇ
-
내가 들어온 횟수??
-
안옯창 합격
-
강사들끼리 뭔가 외모 평가 하면 이렇게 될 거 같아요 10
!! 하지만 저는 민철쌤이 조아요
-
결국 수능은 기본기 싸움이라고 생각하는데 국어는 읽는속도 수학은 속도+정확도 영어는...
-
ㅇㅇ
-
무언가가 떠오르는데 자꾸
-
동아리 축구랑 일정 겹침 개총 mt까진 그래도 비벼볼까?
-
재밋는 글 써줘 7
글 보는 재미가 쏠쏠한뎅
-
문제의 퀄리티는 문제만으로 정해지는게 아니기 때문 학생들이 간과하는 요소가 있는데...
-
지금 정석민 듣고있는데 양도 적고 저랑 안맞는거 같아서 커리 바꾸려는데 김동욱쌤이나...
-
뒷담은 굳이 직접 그걸 찾아서 듣는거는 아니죠 ㄹㅇ
-
기하 풀이 시간 3
미적분에 비해서 기하는 모의고사 볼 때 시간이 많이 단축되나요?
-
이렇게 4개 사면 손해볼일은 없죠?
-
ㅠ
-
기하 시발점 0
기하 시발점만 듣고 기하 8문제 다 맞출 수 있나요?
-
난 틀딱친구들이랑 술이나먹다가 끌려가야징 파릇파릇한캠퍼스나도돌려줘
-
전부 최초합
-
예를들어 학기중에 서울이나 수도권등 대학근처에서 대면과외하다가 방학되면 집으로...
-
ㅇㅈ 9
코엑스
-
차라리 사락오당이 말되는
-
으악 슬의생에서 갑자기 바로 넘김
-
오랜만에 맘스터치 버거 두 개랑 치즈볼까지
-
저번에 약속드린대로 2019학년도 6월, 9월, 수능 기출분석서를 배포합니다....
-
푸앙아 안녕 0
안녕!
-
리뷰수가 곧 외모순이더라
-
기하 노베 0
작수 미적 80(미적3틀인데 30번 찍맞)인 재수생인데 기하로 갈아타도 괜찮을까요?...
첫번째 댓글의 주인공이 되어보세요.