다시 한번 나형 15번 문제 올립니다 ㅠㅠ 고수님들 꼭 봐주세여
게시글 주소: https://orbi.kr/0001670383
그냥 접선의 방정식 공식으로 풀려고했는데요
저처럼 풀면 왜 답이 안나오죠??
일단은 문제 보고
문제 이해하려고 밑에 그림 처럼
대충 이런꼴이겟구나...하고 그래프 딱 그렷구요
그 다음 밑에 처럼 접선의 방정식 공식썻어요..
그래프에서 보이시는것처럼 접점이 (a,0)이니까
따로 미지수 (t,f(t) ) 로 놓을 필요 업이 바로 공식 대입하면 된다 생각햇구요..
답이 왜 안나오죠??
혹시 점(a,0)이 접선의 방정식 위에 있다는 명확한 보장이 없어서 그런가요?
그림으로 대충그려보니 뭐 대충 접점 되길래 접선위에잇겟지.........라고생각햇는데...
풀이 보니깐 다들 접접을 미지수로 잡으셔서 풀던데...
그림 딱 보고 왠지 이거 접점이 접선의 방정식 위에 접한다는 느낌이 들어서...
t로 안놓앗스빈다 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
야 술깼다 0
보통 자의로 마시진 않지만 그만마실게요
-
시험 4시간 전 0
치타 기상 완료
-
여유가없는데어떻게관심을쏟고연애를해
-
크아아아아악
-
교 수 님 1
에 이 주 세 요 에쁠이면 더 좋고
-
다시 시작 4시간의 전사는 달린다
-
D-6인데 완성된 과목이 없음...................... 화2생2는...
-
롤슈 떴구나 0
만델라 엔딩이라니 너무 아쉽다
-
미치겠다
-
작년에 쓴 문제 재탕하는게 왜 욕을 그렇게 쳐먹었던건지 모르겠음 우수하고 배울게...
-
뭐 난이도 라던가....표본....등등...
-
코로나 걸렸을 때랑 비슷함
-
공부해
-
찌그러진 토끼 카카오 이모티콘 내가할말 얘가다함 애들이 나 보고 만들엇냬 진짜 ㅅㅂㅋㅋㅋ다산다
-
이제 수학 개념 나갑니다. 까먹긴햇지만 2학년때 쎈 2회독하기도 했고 3떳습니다....
-
미네깃테유쿠 난다카~
-
맞추나 궁금해서 잠이안옴
-
롤체해야지 8
목표:챌린저
-
느낌이 좋다 4
몬스터 두 캔 빨았더니 잠도 거의 안 오다시피 하고 필기본 노트에 옮겨쓰는 중인데...
-
자취 여부랑 함께 말해주면 더 ㄱㅅ 보통 70 쓰나?
-
시발 4
아
-
제가 작년에 사놓은 책이 2025 뉴런,수분감,시냅스가 있는데 그냥 풀까요 아니면...
-
ㅍㅈ가 뭐게 341
피자 피지 피즈 퍼즐 또 뭐있죠
-
위 문제는 각각 2509 30번, 2506 12번입니당. 위에껀 ㄹㅇ 계산만 12분...
-
외국 살다가 군복무 마치고 오랜만에 공부하는데 예전엔 다 했었는데 지금은 기억 나는...
-
너무 아름다우심.. 저런분들은 왜 내 근처엔 없는거지
-
20수능 가형 30번풀이 이 풀이를 보고 같은 종이라고는 생각할 수 없는 격의 차이를 느꼈음
-
어버이날과 겹쳐서 겸사겸사 사려는데 고민 중 원래 사려던 비녀+장신구+책갈피 세트는...
-
26시간 하려면 내일 아침 8시까지는 해야 될거같은데 ㅋㅋ
-
D-2 ㅇㅈ 1
수학 더이상 할게없음 이제 으으
-
ㄹㅇ
-
2옥라에서멈춤 시에서가성처리함
-
결혼이나 여러 가지 '으른들의 이야기'를 듣고 있다 보면 내 얘기가 아닌데도 일단...
-
나머지 과목은 동사로 정했구 백분위는 정법이 더 좋은거같긴한데 공부량이나 여러가지...
-
누워서 문제만들고싶다
-
이해원N제 책이 1
이해원 모고 문제를 재탕하는 문제집인가요?
-
내 청력이 이럴리 없는데
-
힘들군
-
우항항 12
ㄹ.ㄹ
-
절 실물로 보실 기회가.. ㅎㅎ
-
레어 버그인가 4
두번 눌렀더니 두개 생겼네
-
지금 만나는 사람이랑 똑같음 생각해보니까 그러네 그에비해 난 아직 철이 덜 든거같음
-
오늘의 야식은 2
불닭과 핫바..
-
ㅇㅇ
혹시 점(a,0)이 접선의 방정식 위에 있다는 명확한 보장이 없어서 그런가요?
정답입니다
접점이 (a,0)이라는 뜻이 아니죠
문제를 잘못해석하셨을뿐만 아니라
밑에분이 말씀하신대로 밖의점이 주어지면 미지수놓는게 기본이죠
제가문제를 잘못해석했단말이
어떤쪽으로 잘못해석햇다는거죠 ?
미지수놓는거는
접점 밖의 점이면 미지수놓는건 알고잇엇는데
그림 그려봤을떄는 접점 자체가 y축이 0이 되버려서
미지수를 놓지 말아야생각햇어요 ㅠㅠ
일단 미지수 놓을 생각을 전혀못했던 님은 가장 기본적인걸 모르신다고 보면 됩니다.
정석 기본문제만 보더라도
외부의점에서 접선긋는문제나오면 바로 미지수잡고들어갑니다.
(a.0)이 곡선 위의 점이라는 말이 문제 어디에도 없는데 마음대로 푸셨네요 ;;
제가 질문을 제대로 이해한건지는 모르겠는데...
(a,0)이 접선의 방정식(그러니까 (0,-4)에서 곡선 y=x^3 - 2에 그은 접선의 방정식)위에 있는건 문제에서 이미 제시해놓고 있어요
근데 님께서 그린 그림 보면... 마치 접점이 (a,0)으로 해놓으 신것? 같네요..
(a,0)과 곡선의 그래프 위에 있는 접점은 다른 점으로 두고 시작해야합니다.
(a,0)과 접점이 같다는 보장이 없기때문이죠.
그러므로 접점을 미지수로 예를들어 (t , t^3 - 2)으로 두고 시작하는 겁니다.
그래서 점(0,-4)에서 점(t , t^3 - 2)까지의 변화율과 (t , t^3 - 2)에서의 순간변화율이 같다고 두고 풀면 t=1이 나오므로
접선의 방정식은 y=3x-4라는 것을 알수 있습니다.따라서 a=4/3
일단 (0,-4)라는점이 주어진함수의점인지를 판단하고 그밖의점이면 접점을하나미지수로잡아야죠
그다음에 미지수점을이용해서 공식써서 y=f'(t)(x-t)+f(t)식만들고 x=0,y=-4 대입시키면 t에관한것이나오죠..
그다음엔 저식에다가 y=0집어넣었을때의 x값을구하시면되죠..
혹시 그러면 앞으로 접선의 방정식 문제 풀떄
접점이 접선 밖에 있는 경우에는
왠지 이문제 처럼 느낌상 접점이 (a,0) 일거 처럼 보여서
접선의 방정식 공식에서 무작정 집어넣으면 안되고
접점을 무조건 t,f(t)로 놓아야 하나요??
확실하지 않으면 승부를 걸지 마셔야죠..
직관 쩌시네요...
(t,f(t))로 놓고 풀어도 직관으로 푸는거랑 시간차이별반 안날거같은데.. 직관이라 함은 시간단축을 위한스킬이아닌가요?