간단한 함수의 극한 질문
게시글 주소: https://orbi.kr/0001624105
억지로 끼워 맞추면 해설 할 수 있을 것 같은데 , 친척 동생 같은 사람에게 설명해 줄 순 없을 거 같네요.
누가 이거 시원하게 설명해주실 분 계신가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
근데 또 막상 수능끝나면 롤만 ㅈㄴ할거같음
-
알바 구할때 까지만 일한다고 했는데 빨리 구해지면 좋겠다
-
연령조사 6
-
현우진 김기현 5
재수까지 생각중인 07년생 정시파이터인데 3모 5모 4등급 중간입니다 3점짜리랑...
-
과목마킹 화작으로 바꾸려고 ㅋㅋ
-
국어 1등급분들은?
-
물2 이제 회로고 지2 이제 대기를 움직이는 힘임..
-
오르비 안녕히주무세요! 10
오르비 잘자~
-
난 존예 여르비인데 14
왜 아무도 나한테 쪽지 안함
-
좆됏네 진ㅁ자
-
이거 진짜임? 7
5모 기준 미적 80 vs 확통 92 실력 비슷해보임?? 표점은 확통 92가 10점...
-
열품타가 1시간 21분이네 ㅎㅎ..
-
문득 궁금해짐
-
이게 왜 다 오이 10
ㅇㅁㅇ
-
뭔가 음함수 미분인줄 첨에
-
에밀리아임..
-
갈바닉 부식으로 실험 하려고하는데 부식이 얼마나 오래걸릴지 모르겠어서 바로 확인 할...
-
에에휴
-
오르비 안녕 14
-
새벽4시 리그경기를 위해~~
-
군대에서 생활과윤리 2주 공부하고 백분위 93나온 썰 (현자의 돌 활용법) 0
생활과윤리는 놀랍게도 한 달만에 2등급이 나올 수 있는 과목입니다 (제가 직접...
-
오늘공부 0
국어:ebs고전시가4개복습 고전소설2개학습 수학:스탠주간지 풀기, 25강기원모2회,...
-
이번 과탐 무슨 과목이 젤 ㄱㅊ을거같은지 선택 ㄱㄱ 9
나는 일단 생지
-
엔티켓 이해원 빅포텐 지인선 커넥션풀고 하사십풀고있는데 양이 부족해서 같이 병행해서...
-
근데 듣기 3개 틀림 ㅋㅋㅋㅋㅋ
-
더프제외 현역때 국어실모 한번도 안풀어봄 ㅎㅎ나 성장했겠지? 기대가된다 기대가 내...
-
1.인강 듣고 나서 문풀하고 안풀리는거 다시 보는거 2.문풀하고 논리에 허점있거나...
-
작수 쉬고 올해 참전하려는데 왜 작년 6평 29번에 난데없이 해석을 요구하는 선지가 있는거죠...
-
철학지문 시러 11
극혐;;
-
공통은 22번 말고 너무 쉬웠고 미적도 28번 말고는 어려운게 없었음 근데 22번...
-
님들 전문 다 외우고 다님? 아니면 걍 시함장에서 일일이 다 해석함? 전문 ㅈㄴ...
-
존나 맛도리
-
이해원 이로운 볼텍스 4규s2 지인선 서킷 렛츠고
-
확통사탐 대학교 0
국어 89 수학 98 영어2 탐구 96 96 정도면 공대로 어디까지갈수있나요?
-
표지 디게 예쁘다 근데 문제수가 너무 적네
-
생각보다 오르비에 언급량이 적어서...
-
야옹 3
냥~~
-
생윤하다가 개화나서 작년에 찍먹 했던 동사로 돌아가려는데 어떨까여..역사 제대로...
-
국어 지문은 27
복잡하고 정보량이 많은 거보다 단순한데 생각을 요하는 게 훨씬 나음요. 제가...
-
동생 200등 중에 100등함; 집안분위기 좆창남 저 좀 받아주세요
-
. . . 7
하버드대학교 맘스터치 학과 26학번 오로라
-
안녕히주무세요 8
오늘은 7시에 일어날래요
-
김승리 풀커리 타고 있는 지금 좀 기출 분석이 덜 된 것 같아서 기출문제집사서...
-
몇인가요
-
와 젖탱이봐라 침고이네 17
하 진짜 ㅈㄴ 피곤하네 다들 오늘 하루 고생하셨어요
예.... 0분의 0꼴이면 반드시 수렴합니다. f(x)가 x를 0으로 보내면 0이 된다는 건 0으로 수렴한다는 의미 즉 f(x)가 'x'라는 인수(?) 를 포함하고 있다는 거잖아요... 그러니깐 x분의 f(x)에서 f(x)의 인수 x가 나눠지고 나면 결국 무슨값인진 모르지만 a로 수렴하게 되는거죠./... 여기서 설명하는게 한계가 있어서...이해되세요 ㅠㅠ?
객관식이든, 주관식이든
주어진 식이 '수렴'하니까 문제로 출제했겠지마는 정확한 증명 없이
그냥 가설적으로 추론하는 것도 위험한 발상입니다.
예.... 0분의 0꼴이면 반드시 수렴합니다. f(x)가 x를 0으로 보내면 0이 된다는 건 0으로 수렴한다는 의미, 즉 f(x)가 'x'라는 인수(?) 를 포함하고 있다는 거잖아요... 그러니깐 x분의 f(x)에서 f(x)의 인수 x가 나눠지고 나면 결국 무슨값인진 모르지만 a로 수렴하게 되는거죠./... 여기서 설명하는게 한계가 있어서...이해되세요 ㅠㅠ?
페르라나미 // 0분의 0 꼴이면 반드시 수렴한다니요, 그런 위험한 소리를 하시다니... -_- 이 문제가 특별하게 셋팅되어있어서 가능한 겁니다.
그러므로 일단은 그런 것이 가능하다고 가정하고 푸셔도 문제 없습니다. (혹은 다른 식으로 말하자면, 어차피 값을 구하는 문제이므로 일단 모든 것이 잘 되는 좋은 함수를 생각하고 푸셔도 상관 없다는 것입니다.)
물론, 이 문제의 경우 f(x) / x 가 1/3 으로 수렴함을 증명할 수 있습니다. 편의상
g(x) = x^2 + 2x
h(x) = f(x) - x
로 둡시다. 그러면 문제 조건에 의해 h(x)는 x→0 일때 0으로 수렴하며, {g(x) - h(x)} / {g(x) + h(x)} 가 2로 수렴합니다. 이제 {g(x) - h(x)} / {g(x) + h(x)} = j(x) 로 두면
h(x) = (1 - j(x)) g(x) / (j(x) + 1)
이고, 따라서
f(x) = x + (1 - j(x)) g(x) / (j(x) + 1)
= x + (1 - j(x)) (x^2 + 2x) / (j(x) + 1)
입니다. 이제 양 변을 x로 나누면
f(x) / x = 1 + (1 - j(x)) (x + 2) / (j(x) + 1)
이고, x→0 일때 j(x) → 2 이므로, 위 식은
1 + (1 - 2) 2 / (2 + 1) = 1/3
으로 수렴합니다. 따라서 f(x) / x 가 1/3 으로 수렴함이 증명됩니다.
아 답글 누르는 버튼이 컴퓨터가 구려서 안보여서 이것저것 누르다가 비추천 눌렀네요.
죄송합니다.
시원하게 이해가 된 것 같습니다. 감사합니다.
sos440 님의 놀라운 방법을 이용하는 것도 좋은 방법이기는 합니다만, 착안하기가 다소 어려울 수 있을 듯 보입니다.
( 3x + x^2 - f(x) ) / ( x + x^2 + f(x) ) 를 -1 + ( 4x + 2x^2 ) / ( x + x^2 + f(x) ) 으로 변형하여(분자에서 f(x)를 없애려는 의도) 풀이를 진행하면,
극한의 기본 성질만으로, f(x) / x 의 극한을 구할 수 있습니다.