" 미분가능하다 " 의 의미 제가 이해한거 맞는지 봐주세요~!
게시글 주소: https://orbi.kr/0001532404
X=a 에서 미분가능하다는게 보이까
a보다 큰쪽에서 a로 한없이 가까워질때랑
a보다 작은쪽에서 a로 한없이 가까워질때랑 같아야 되는건데
이게 한없이 가까워 졌을때 양쪽에서 직선의 기울기가 똑같은 수로 수렴한다~
라고 이해햇그든요..
그니까 y=lxl 절대값함수 예로 들면 0에 가까워질때
왼쪽에서 0에 가까워지면 한없이 기울이는 ㅡ1로만 수렴하고
오른쪽에서 0에 가까워지면 한없이 기울기는 1로만 수렴하므로 미분가능하지 않아~
기울기 극한 (?) 이란 식으로 이해했는데 맞지요 ?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이번년도에 생윤 사문 공부하다가 생윤 너무 안맞아서 내년에 재수할 때 지리 하나로...
어떤 임의의 점에서
1. 연속이고
2. 좌미분계수와 우미분계수가 일치하면
그 점에서 미분가능하다고 한다.
연속이라는 점을 빼먹으셨네요.
기하학적으로, 그 점 근방에서 주어진 함수의 그래프를 마치 직선처럼 볼 수 있다는 것을 뜻합니다.
비유하자면, 그 점 주위를 배율이 좋은 현미경으로 계속 확대하다 보면, 결국 곡선이 직선처럼 쫙 펴지는 장면을 볼 수 있다는 것이지요.
그리고 이때 이 직선이 바로 주어진 점에서의 접선이 됩니다. 그래서 접선을 보통 곡선의 1차 근사라고 부르기도 하지요.
이런 직관적인 이미지는 특히 미분가능성에 대한 직관을 잡기에 좋다는 것이 제 생각입니다. 예를 들어서 y = |x| 가 왜 원점에서 미분 불가능한지 바로 떠올릴 수 있지요.
저는 걍 제방식대로 이해하고 있는데
대표적으로 미분가능하지 않은점이 뾰족점이죠.
뾰족점이 아닌 점 a,f(a)에서의 접선은 딱 하나 입니다.
근데 뾰족점인 b,f(b)를 지나는 직선은 (y=lxl 에서 0,0) 그점을 지나게 직선을 그리고 이리저리 흔들 수 있죠? (그래프랑 만나지 않게)
기울기가 여러개가 되니까 미분불가능 이렇게 이해하는데 좀 미친억지 같지만 암튼 ㅎㅎ;;