[DNT]2018학년도 6평 D&T모의고사 문제지, 해설지
게시글 주소: https://orbi.kr/00012100403
2018학년도 D&T 6월 모의평가(가)_문제지_온라인시행_0527.pdf
2018학년도 D&T 6월 모의평가(가)_해설지.pdf
2018학년도 D&T 6월 모의평가(나)_문제지_온라인시행_0527.pdf
2018학년도 D&T 6월 모의평가(나)_해설지.pdf
2018학년도 D&T 6월 모의평가 EBS 연계 표.pdf
시험 보시느라 고생 많으셨습니다.
시험지와 해설지, EBS 연계 표 업로드하였습니다.
감사합니다~!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
언미화물2 97 95 1 97 98 이거 높반 가능한가요? 수학이 좆망했는데
-
새로운 플레이리스트로 스펙트럼을 좀 넓혀봤어요 사실 힙합도 이런 감성적인 노래들을...
-
통학하면 가는데만 1시간 30분정도인데 더 멀리서 다니는 사람 있음? 일산 사는데 빡세네
-
ㅇㅂㄱ 0
-
링거 꽂고 다니는 것마냥 계속 충전기를 꽂아놓고 있어야해..
-
투표 1
ㅇㅇ
-
순순히 어두운 밤을 받아들이지 마오. 노인들이여, 저무는 하루에 소리치고...
-
누가 매일 1시에 기절시켜줬으면 아니야 그대신 앞으로 몇달간 새벽에 이런건...
-
명륜진사갈비 혼밥안되나..
-
아군
-
설대 최초합 등록 포기하고 의대 추가 합격된 곳으로 등록이 가능한 거죠? 그리고 이...
-
우선 괴델의 불완전성 정리제1정리. 페아노 공리계를 포함하는 어떠한 공리계도...
-
얼버기한 이유 6
오늘은 학원 강사 면접 보는 날이에용 ㅎㅎㅎ 절 응원해주세용!!
-
환전해놨는데 다 날아가네 ㅜㅜ
-
인생망함 3
ㅇㅇ
-
사람이되고싶다 4
앞으로 남은 272일동안 쑥과 마늘만 먹으며 수능을 준비한다면 4수 끝에 사람이 될수 잇을까
-
건동홍시임
-
질문해드려요 19
철학적인 질문을 던져보도록 노력하겠습니다
-
아니 이거 근데 오른쪽 눈은 눈무링 안나고 왼쪽눈만 눈물이 자꾸 고이고 뿌옇게 보이고 이러는데 2
이거 진짜 이항한거 아님?
-
저도 무물보 18
해볼게요
-
뉴런책 배열을 수1 23 24 25 26 수2 23 24 25 26 미적 23 24...
-
네임드는 이 시간에도 무물글이 5분만에 저렇게 차는구나 4
이게 고닉인가...
-
할수이ㅛ다
-
돌아가구싶다 2
나 돌아갈래
-
일취클 피램 다 띁나면 사모로 넘어가는게 맞을까요?
-
애반가요??
-
피로도 다쓰고 캐릭터 생성제한도 걸려서 더 할게없네
-
1. 고전논리는 완전함2. 산술체계는 고전논리로 나타낼수 있음3. 산술체계는 완전함...
-
무엇이든 물어보아주세요 13
선넘질 ㄱㄴ 선넘질 ㄱㄴ은 쉽게 오지않습니다.
-
굿나잇 2
ㅃ
-
일클 취클 문학 피램 풀건데 고전시가는 인강or문풀중 뭐가 좋을까요?인강추천한다면...
-
무엇이든 물어보세요! 23
생각보단 자주 안오는 기회에요
-
졸리니까 1
운동
-
지금까지 안잤네 진짜 어카지 조졌다 하…..
-
잘자요 10
꿈에서 깨지 않았으면
-
XX님 따라하게
-
막 부모님이랑 싸우다가 부모님이 화내면서 님들 소중한 물건 찢거나 버리거나 한적...
-
국어가 장애인급이면 반수 접는게 맞음?
-
오야스미 0
네루!
-
국어가좃같은데반수접을까그냥
-
이렇게 곁에 있는데도 저 멀리 보이는데 그래도 괜찮아 꿈이어도 괜찮아 지금만큼은...
-
사실 저말이에요 19
전생 계속 티내고 있거든요 근데 알아보시는 것 같기도 하고 못알아보시는 것 같기도 하고
-
2.13 일기 7
사람들은 왜 수능을 더 보려고 하는걸까 비단 수능뿐만 아니라 편입이나 논술도...
-
아 춥다 스벌 2
우어어
-
기병 is so cute 이거 아직도 하시나요? ㅈㄱㄴ
-
모닝 짤 0
-
211021 논증 풀이 18
D에서 직선 AB에 수선 내리자. (수선의 발 F), 그럼 A,E,F,D도 한 원...
-
님들 안자네 0
키 안큰다 쪼.꼬.미~?
-
시발아 풀로 준비한덧도 아니고 90일정도준비했는데 과는 원하는과왔잖아 안그래? 하좀그만
-
https://youtu.be/kmDl63UBqyo?si=zOh2IrMfxSZTMme...
감사합니다
잘 풀겠습니다 !!
26 28 틀림 엁탱...
너무 어려웠어요.
ㅈ살...
감사합니다!
수학이 정말 많이 부족하다는 사실을 깨우쳐주는 시험이었습니다 ㅠㅜ..
좋은 문제 잘 풀었습니다!
감사합니다!
저 안열리는데...딴분들은 열리시나여...
모바일이신가요?
네네 모발이에영...
웹으로 부탁드려요~!
잘 풀었습니다 감사합니다!
1컷 어느정도로 예상하시나용?
96으로 잡았었는데 반응 보니까 92까지 갈거같기도 하고
나형은 확실히 어려워서 88? 정도일것같네요
![](https://s3.orbi.kr/data/emoticons/oribi/006.png)
감사합니당맞아 횽 96은 너무 높았어
아ㅏ..나형 29번이 제일 어렵네요 집합 ㅠㅠㅠㅠㅠ
![](https://s3.orbi.kr/data/emoticons/oribi/005.png)
제헌님 쪽지 한번 확인해주시면 감사하겠습니다!답변드렸습니다~! 감사합니다~!
Good
검토해주셔서 감사합니다.()_)_)
좋은문제 잘풀었습니다!!19번에 허를찔렸네요ㅠㅠ
감사합니다!
19번 반성합니다 ㅠㅠ
감사합니다 처음 댓달아보네요 ㅎㅎ! 성의 무시할수없어서 좋아요랑 댓남깁니다~ 수고하셨어요~
제헌좋아
좋은 문제 감사합니다~
혹시 10문항 정도의 유사문제는 어디서 받을수 있나용?
해설지 확인해주세요 ~
문제 진.짜! 좋은것 같아요.. 감사합니닿ㅎㅎ 근데 나형 30번 어렵네요....ㅠㅠㅠㅠㅠㅠㅠㅠ
^^
30번 f프라임 0이랑 f프라임 a랑 왜 같아야하는지 설명해줄수 있나요??ㅠㅠㅠ
미분가능하기 떄문이에요
확통쪽에 힘이 많이들어가서 92엿으면 좋겟음...ㅜ
가형은 92 될거같기도 합니당
나형 잘풀었습니다 30번보단 21번이 더어렵네요 ㅠㅠ
나형 잘풀었습니다 30번보다 21번이어렵네요 ㅠㅠ 20 21번 틀렸는데 등급컷좀 알수있을까요?
1컷 84~88 정도로 예상됩니다아.
나형 80 나왔습니다... 절망적이네요ㅠ
나형 좀 어려웠죠 ㅠㅠ
잘 풀어보겠습니다 감사합니다
제 포스트에서도 보셨듯이 작년 수능 경향(21, 30번 유형 및 준킬러문항 난도상승) 반영+더 어려운 난이도를 특징으로 하는 모의고사라고 감히 평가해봅니다! 고퀄리티의 모의고사를 수험생들을 위해 무료로 배포하신다는 점에서 대단히 감사드립니다~
:) 읽어보았습니다.
감사합니다.
많이 어렵지만 자신감도 갖게 해주는 시험이었습니다 정말 감사드려요!
아니..문과기준 수학 그래도 못하는 편은 아니라고 생각했는데..껄껄 갯수세기할까하다가 진짜 실력대로치자고 갯수안햣도만 20 21 28 29 30 나갔네용 진짜 어려워요 ㅠ 문제 만들어주셔서 너무 감사합니다
흠 29 30 틀렸네요 ㅜㅠ 29번은 될거같았는데 ㅠㅠ 감사합니다
와 가형 30번 미쳤다;; 100분 꼬박 쓰고도 못푸네요ㅠㅠ 좋은 문제 감사드려요
저만 나형 무난하다고 생각했나요... 21번, 29번, 30번 빼고는 무난한 난이도라고 생각되었습니다.
물론 100은 아니고 92이긴한데... 29, 30나갔네요.
29번 풀다가 시간이 끝나서 30번은 손도 못대긴 했다만은...
6월도 이 정도로만 풀려줬으면 좋겠네요.
문제는 매우 깔끔하고 좋았습니다. 감사합니다.
감사합니다 잘 풀겠습니다
나형 30번 문제요! 표현상 0을 기준으로 x<0은 감소함수 x>0은 증가 함수인데 극댓값을 가질수가 있나요?
넵 x=0에서 극대를 갖는다고 안했으니까요 ~ 다른 점에서 충분히 극댓값이될수있죠
제가 수학을 못해서 이해가 잘 안가는 건가요 ㅠㅠ
극값을 가지려면.. 기울기의 음 양 부호가 바뀌어야 극값을 가질 수 있는거 아닌가요?
0보다 큰 범위에서는 기울기가 항상 양수이고
0보다 작은 범위에서는 기울기가 항상 음수인데
어떻게 극댓값을 가질수 있는건가요??ㅠㅠ
극댓값이라는 표현보다는 최댓값이라는 표현이 맞는거 아닌가요?
엥 최댓값은 없죠 4차함수라..
아니요..f'(2) 가 최소가되는 상황에서의 최댓값을 말한겁니다..
아닌가요??
x<0 상황에서는 기울기가 항상 음수이거나0이고
x>0 상황에서는 기울기가 항상 양수이거나0이라는
조건은
음양의 부호가 변할수 있는 시점이 원점밖에 없는거 아닌가요??
즉 극값을 가질수있는건 원점에서밖에 안되는데
어떻게 4차함수가 극댓값을 가질 수 있는지 궁금합니다..
아니에요 원점과 (x,f(x)) 를 지나는 직선의 기울기라서
x>0에서 f'(x)<0인 x가 존재해도 괜찮아요;;
30번 문제가 약간은(?) 2017대비 샤인미 0회 30번과 비슷한 거 같네요
가형 문제 잘풀었습니다 ㅎㅎ 다른 사설과는 다르게 문제 되게 깔끔하고 좋네요 ㅎㅎ 가형 1컷 얼마정도로 예상하나요??
92~96dlqslek ^^
감사합니다 ㅎㅎ
ㅠㅠ 19번 생각잘못해서 틀리고 30번 b구해서 계산하면되는데 시간종료 ㅠㅠ 문제 좋아서 풀기 좋앗어요 감사함당
가형 30번 30분동안풀었는데 못풀었어요....ㅜㅜ
6평전에 풀고 지금 다시 풀어보니 문제 퀄리티에 다시금 감탄하게되네요 ㅎㅎ 올해도 나형 실모 나오나요??
다시보기