방정식이랑 함수 개념 좀 물어볼게요 ㅋ
게시글 주소: https://orbi.kr/0001143758
1. 방정식을 함수의 일부라고 볼 수 있을까요?? y값이 0인 함수로...
2.함수가 수학 전반에 걸쳐서 굉장히 많이 나오고 응용되잖아요.
함수의 어떤 성질 때문에 이렇게 수학에서 많이 다루어지는건가요????
3.왜 직선의 함수가 아니라 직선의 방정식인걸까요??
정말 바보 같은 질문들이긴 한데.. 정말 궁금하네요..ㅠㅠ
방정식이랑 함수..........
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
역시 역사는 반복된다
-
하사십 즌2 0
뒤에 2회독 문항 들어가는 대신 해설지가 분권당했네
-
일단 나는 셀프로 가난하게 큼.
-
생윤 일기 0
6모 기준 44점이 나왔다 난이도가 쉽기도 했어서 크게 의미를 두지는 않아야겠지만...
-
세지 1
이과 반수생 사탐 처음 해봄 사문 찍먹했는데 너무 재미없어서 세지하려 하는데 지금...
-
남이 금수저 아닌데 애낳던말던 관심 ㅈㄴ많네
-
내가 봤을 때 0
가난한 집에서 애 낳는거 학대라 운운하는 애들은 얼굴 ㅈ박았을듯 이성한테 관심받거나...
-
내가 몸쓰는 일 하다와서 잘 알고있음 2년간 최저정도 받고 개인으로 나오면 월600...
-
나와
-
신드리 귀여웡~~~ 10
우웅~~~
-
뻘글이나 써야지
-
오늘은 아무것도 안 먹어야지
-
이새끼 혼자 지금 초양극화 90%는 만들었다고 보면 됨
-
안그러면저런놈들이...읍읍
-
두둥등장 12
하이하이 무슨 얘기중이지
-
인문학의 중요성을 느끼면 너무 문과충인가?
-
현재의 갈망이 충족되는 것으로 당신이 영원히 행복하진 않습니다. 그렇다고 갈망하지...
-
영어 일기 0
V구문 좋은 것 같다 나는 구문 분석은 되는데, 독해가 되질 않는다 김지영쌤은...
-
이게뭐람
-
우리아빠도 인생 ㅈㄴ열심히 사심 1974년 경북 김천 가난한 신문 배달부의 집에서...
-
난 걍 별 생각이 없어서... 대충 먹고살만큼 벌수있으면 ㄱㅊ다는 마인드 그러면...
-
그런 게는 죽었습니다 :p
-
영어 강사이기 때문에, 수업 커리큘럼과 별 관련 없는 칼럼 1. She loves...
-
한의사 좋음 2
한의대는 싫음
-
돈뿌리기+금리인하 때문에 부동산 상승은 확정되어잇음
-
지나친 부와 사치를 바라지 않고 그럭저럭한 의식주로 행복하게 살기만 한다면 애초에...
-
김일성 ㅅ발럼
-
그냥 자유롭게 살게 해주는건 학대 아니지않나...? 너무 이상한 길로 빠지지만 않게...
-
베이스를 무시하지마라 11
https://youtube.com/watch?v=3pLAwoNoxC8
-
인생이 망해도 전문직이라는거임
-
동사하시는 분 0
개념 나갈 때 동사 하루에 몇 시간씩 하심? 다른 과목 하느라 하루에 2시간씩...
-
국어 일기 0
한번 쭉 읽고 풀고 분석할때는 내가 했던 사고들 쭉 적고 문제는 뭘 묻는지 무슨...
-
작년 드릴이나 다른 문제집들에 비해 좀 술술 풀려서요 실력이 는건지 문제가 쉬운건지를 모르겠어요
-
부모님들이 학생들에게 공부시키지 않는 것도 학대라고 생각합니다 12
특별한 경우를 제외하고 부모님들이 자기 자식을 각 학년 최소 기준을충족하지 않은...
-
이라는나쁜말은ㄴㄴ..
-
서브웨이먹어야지 17
쿠키는 첨먹어보는데 맛잇을까
-
(수학질문) 0
시행착오가 길면 님들은 보통 어떻게 하심
-
“내가 금수저로만 태어났다면 이렇게 피똥싸며 N수하면서 메디컬 가려고 노력 안...
-
수험생 여러분 12
여러분께 중요한건 메타 참전이 아니라 여러분의 수능 점수입니다..
-
확통이 너무 어렵노
-
신택스 현재 듣고있고 이명학 수능루틴 풀려했는데 조교븐께서 신택스 끝나고 하는게...
-
고퀄 칼럼과 무료 자료를 뿌려주던 고닉분들이 산화되니까 백수 늙은이들이랑 분탕들이...
-
현장 언매 10분컷 <<< 장사치들이 만들어낸 허상임 0
언매 모의고사로 연습을 하겠다 <<< 참 좋은데 언매 모의고사 양치기로 시간을...
-
주변인 증언에 따르면 대입보다 편입이 쉽긴한데 막 성인이 되서 대학맛을 봤는데도...
-
내가 앙 채가게
-
1. 지구를 못해서 다른 과목으로 튀었는데 불안하거나 2. 튀었는데 성적이...
-
뭔가 메타참전 마렵지만 10
쫄려서 그냥 구경만 하기로 했다
-
6시간 공부 성공! - 7시간 하면 책을 빼앗길 예정이에요. 7
제목이 이상하죠? ㅎㅎ 말 그대로입니다. 하루 순공시간 6시간 확보에 성공했어요!...
-
킬캠 2회스포있 2
222 진짜 한번씩 더 풀었다
-
댓글들 보면 나라가 소멸하길 바라냐, 돈이 인생의 다냐, 니네 부모는 금수저냐...
1. 뭐 비슷한 거 아닐까요?
2. 어떤 변량에 대해서 일정한 규칙을 갖게 변하는 게 있다면.. 그걸 일상생활에 적용할게 많죠.. 뭐 예를 들어, 온도에 따른 음속의 변화라던지, 화학에서 pH를 구하는거라던지, 등등..
3.직선을 1차함수로 그냥 생각하면 될듯한데요..
1. '함수'는 '대응관계'이고 '방정식'은 '미지수의 값에 따라 참과 거짓이 결정되는 식'입니다.
방정식과 함수는 아예 시작이 다른 개념이지만, 어떤 함수관계에서 치역의 원소를 지정해준다면, 미지수의 값에 따라 참과 거짓이 결정되는 식이 되니
함수의 치역의 원소가 정해지는 순간 우리는 그 식을 방정식이라고 볼 수 있습니다. 분명한 것은 출발은 엄연히 다릅니다.
2. 답변드리기 굉장히 광범위-_-한 내용이지만.. 변량 하나에 대해 반드시 공역의 원소가 '하나'만 대응된다는 것과
꼭 공역의 모든 원소로 가지 않아도 된다는 점, 대응관계를 어떻게든 정의만 하면 다 함수라는 점에서 그렇다고 생각해 봅니다 ㅡㅡ;;
3. 직선은 도형입니다. 도형을 표현할 때 어떤 x좌표에 대해 그에 대응하는 y좌표를 식으로 써주면, 쉽게 대응관계를 찾아낼 수 있지요;?
그런데 이 대응관계는 반드시 정의역과 공역, 그리고 대응관계식이 주어져야 함수입니다.
그런데 우리가 보는 직선을 표현하는 식은 덩그러니 식만 나와있지요? x, y의 값에 따라 참과 거짓이 결정되는 방정식으로요.
[물론 정의역과 공역은 주어진 것이나 다름없습니다만.... '식'이라는데 좀더 주안점을 두었습니다.]
결론은 '직선의 함수'라고 부를 수 있습니다. 충분히요. 그러나 '식'을 표현하는 데 함수라는 표현보단 방정식으로 부르는 것이 좀더 식을 강조하는 것이
아닌가 싶네요.
1. 아니요 방정식과 함수는 같이보면 안됩니다
일단 정의 자체가 다르지요. 방정식은 미지수의 값에 따라 참과 거짓이 갈리는 식인거고
함수는 x값에 따른 y값의 대응관계를 설명한거에요
근데 방정식을 풀 때, 함수를 이용해서 구하면 편하기때문에 이용하는겁니다.
x^2-2x+1=0이라는 방정식의 경우 y=(x-1)^2 이라는 함수에서 y=0일떄의 x값이 근일테니까요
근데 함수는 정의역과 치역의 범위가 실수다보니 방정식하고 완전히 연결시킬수는 없습니다
거듭제곱근 공부할때 나오는데요
x^n=a 는 x에 관한 n차방정식이니까 무조건 근이 n개인데
우리는 실근만 궁금하니까
"실근"을 알기 위해 그래프를 그려서 근을 구하죠.
2번
x값마다 y값이 대응되서 툭 튀어나온다는게 간편하면서도 너무 많은 현상을 설명할 수 있기 때문이겠지요
실생활문제같은거 풀다보면 조금씩 감이 올지도 모르겠네요..
3번
그러게요 이건 저두 잘 모르겠어요ㅠ,ㅠ
3번은 결론부터 말하면, 직선의 방정식도 되고 1차함수도 됩니다. (제 기억으론, 중학교 수학교과서에 1차함수 단원에서도 나오고, 도형의 방정식 단원에서도 나올겁니다.)
보는 관점의 차이인데, y=ax+b 라는 식을 방정식으로 본다면, 식을 만족시키는 해집합을 직교좌표축에 표현한 게 직선 형태의 도형으로 나타나는 거고
y=ax+b 라는 식을 함수로 보면, x에 대응되는 y값들을 직교좌표축에 표현한 게 직선이 됩니다.
일반적으로 2차 함수라고 불리는, y=x^2 이라는 식도 보는 관점에 따라서 포물선의 방정식이 될 수 있습니다. 식을 만족시키는 해집합을 직교좌표축에 그렸을 때, 모양이 포물선이기 때문이죠.
이처럼 방정식과 함수 개념을 넘나들 수 있는 식이 있는가 하면 그렇지 않은 식도 있습니다.
x^2/a^2 + y^2/b^2 = 1 이라는 타원의 방정식을 예로 들 수 있을 것 같은데, 타원의 방정식은 식을 만족시키는 해집합의 모양이 직교좌표축에 그렸을 시에 타원으로 나타나죠.
하지만 이 식은 일반적인 함수는 아닙니다.
단지, 일반적으로 어떤 식을 명명할 때, 함수는 차수에 따라, 방정식은 해집합의 모양에 따라 명명하는 듯 합니다.
2차함수를 '포물선의 함수' 라고는 잘 부르지 않는 걸 보면, 직선의 함수라고 부르기 보다는 1차함수라고 부를 뿐이지, 직선의 함수와 직선의 방정식의 개념이 다른 건 아닌 듯 합니다.
전문적으로 수학 공부를 한 적이 없는 보통의 평범한 학생의 개인적인 견해일 뿐이라, 틀릴 지도 모르겠네요.
와.. 스스로 생각해보신건가요?? 뭔가 확 오네요
y=x^2에서 y는 어차피 실수니까
y값 하나하나는 결국 방정식이니까 그걸 직교좌표축에 나타낸거기때문에 ㅁㅁ의 방정식이라고 한다는 건가요??
타원의 방정식도 그런 맥락에서 보면 방정식은 만족하지만 x하나당 y하나가 아니니까 함수는 아닌거구..
무지 똑똑하시네요..부러워요ㅠㅠ
고등학교 때까지 배우는 거의 모든 방정식은 함수로 표현이 가능합니다.(음함수까지포함하면,원도 함수로 인정할 수 있습니다.)^^
예를들어 f(x)=0이란 방정식은 y=f(x)와 y=0과의 교점의 x좌표를 구하는 식으로 생각할 수 있습니다. 즉 방정식을 함수 입장에서 생각하면 교점을 구하는 식이라 생각하시면 됩니다. 물론 해가 허수가 나올때는 가우스평면을 생각해야되지만 그건 고등학교때 까지는 다루지 않으므로 그래프로는 풀 수가 없겠지요.
방정식을 함수로 표현하면 이로운 점은 풀 수 없는 방정식의 해의 위치를 판별하여 근사값을 구할 수 있기때문입니다. 수학이란 학문이 어떤 값을 구하는 것이 많은 부분을 차지하기 때문에 당연히 함수가 중요하겠죠~
직선의 방정식이라고 굳이 표현하는 것은 함수의 개념에 맞지 않는 직선이 존재하기 때문입니다. 가장 쉬운 예로 x=2같은 것이나. Iy-2I=x같은 녀석들이 있기때문이라 생각됩니다.