

Session 2

Mathematics Section

Multiple-Choice Questions

1. What is the value of $\sqrt[3]{5} \times 25^{\frac{1}{3}}$? [2 points]

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

2. For the function $f(x) = x^3 - 8x + 7$, what is the value of

$$\lim_{h \rightarrow 0} \frac{f(2+h) - f(2)}{h}?$$
 [2 points]

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

3. Let $\{a_n\}$ be a geometric sequence where both the first term and the common ratio are equal to a positive constant k . If

$$\frac{a_4}{a_2} + \frac{a_2}{a_1} = 30,$$

what is the value of k ? [3 points]

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

4. If the function

$$f(x) = \begin{cases} 5x + a & (x < -2) \\ x^2 - a & (x \geq -2) \end{cases}$$

is continuous on the set of all real numbers, what is the value of the constant a ? [3 points]

① 6 ② 7 ③ 8 ④ 9 ⑤ 10

5. For the function $f(x) = (x^2 + 1)(3x^2 - x)$, what is the value of $f'(1)$? [3 points]

① 8 ② 10 ③ 12 ④ 14 ⑤ 16

6. If $\cos\left(\frac{\pi}{2} + \theta\right) = -\frac{1}{5}$, what is the value of $\frac{\sin\theta}{1 - \cos^2\theta}$?

[3 points]

① -5 ② $-\sqrt{5}$ ③ 0 ④ $\sqrt{5}$ ⑤ 5

7. If the polynomial function $f(x)$ satisfies

$$\int_0^x f(t) dt = 3x^3 + 2x$$

for all real numbers x , what is the value of $f(1)$?

[3 points]

① 7 ② 9 ③ 11 ④ 13 ⑤ 15

Mathematics Section

3

8. For two real numbers $a = 2\log \frac{1}{\sqrt{10}} + \log_2 20$ and $b = \log 2$, what is the value of $a \times b$? [3 points]

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

10. For the function $f(x) = a \cos bx + 3$ defined on the closed interval $[0, 2\pi]$, let (a, b) be an ordered pair of natural numbers such that $f(x)$ has a maximum value of 13 at $x = \frac{\pi}{3}$. What is the minimum value of $a + b$? [4 points]

① 12 ② 14 ③ 16 ④ 18 ⑤ 20

9. For the function $f(x) = 3x^2 - 16x - 20$, if

$$\int_{-2}^a f(x) \, dx = \int_{-2}^0 f(x) \, dx,$$

what is the value of the positive constant a ? [4 points]

① 16 ② 14 ③ 12 ④ 10 ⑤ 8

11. A point P starts moving at time $t=0$ along a number line, and its position x at time t ($t \geq 0$) is given by

$$x = t^3 - \frac{3}{2}t^2 - 6t$$

What is the acceleration of point P at the moment its direction of motion changes after starting? [4 points]

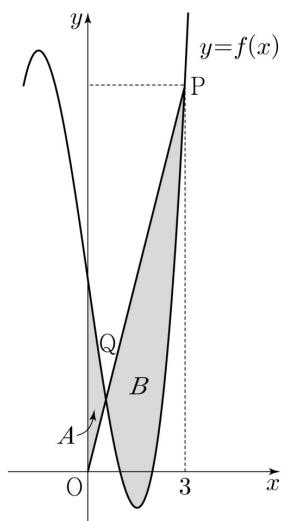
① 6 ② 9 ③ 12 ④ 15 ⑤ 18

12. Let $\{a_n\}$ be a sequence with $a_1 = 2$ and $\{b_n\}$ be an arithmetic sequence with $b_1 = 2$. If they satisfy

$$\sum_{k=1}^n \frac{a_k}{b_{k+1}} = \frac{1}{2}n^2$$

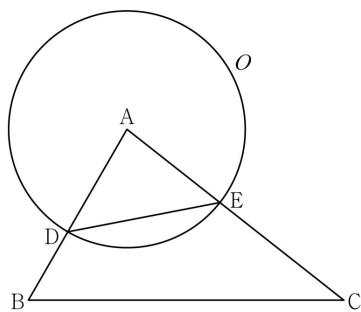
for all natural numbers n , what is the value of $\sum_{k=1}^5 a_k$?

[4 points]


① 120 ② 125 ③ 130 ④ 135 ⑤ 140

13. Let $f(x)$ be a cubic function with a leading coefficient of 1 satisfying

$$f(1)=f(2)=0, f'(0)=-7.$$


For the origin O and point P(3, $f(3)$), let Q be the point other than P where segment OP intersects the curve $y=f(x)$. Let A be the area of the region bounded by the curve $y=f(x)$, the y -axis, and segment OQ, and let B be the area of the region bounded by the curve $y=f(x)$ and segment PQ. What is the value of $B-A$? [4 points]

① $\frac{37}{4}$ ② $\frac{39}{4}$ ③ $\frac{41}{4}$ ④ $\frac{43}{4}$ ⑤ $\frac{45}{4}$

14. As shown in the figure, in triangle ABC, let D be a point on segment AB such that $\overline{AD} : \overline{DB} = 3 : 2$. Let O be a circle centered at A passing through D, and let E be the point where circle O intersects segment AC.

If $\sin A : \sin C = 8 : 5$ and the ratio of the area of triangle ADE to the area of triangle ABC is $9 : 35$. Given that the radius of the circumcircle of triangle ABC is 7, what is the maximum value of the area of triangle PBC for a point P on circle O? (Note: $\overline{AB} < \overline{AC}$) [4 points]

① $18 + 15\sqrt{3}$ ② $24 + 20\sqrt{3}$ ③ $30 + 25\sqrt{3}$
 ④ $36 + 30\sqrt{3}$ ⑤ $42 + 35\sqrt{3}$

15. For a constant a ($a \neq 3\sqrt{5}$) and a quadratic function $f(x)$ with a negative leading coefficient, let the function $g(x)$ be defined as:

$$g(x) = \begin{cases} x^3 + ax^2 + 15x + 7 & (x \leq 0) \\ f(x) & (x > 0) \end{cases}$$

If $g(x)$ satisfies the following conditions:

- (a) The function $g(x)$ is differentiable on the set of all real numbers.
- (b) The number of distinct real roots of the equation $g'(x) \times g'(x-4) = 0$ is 4.

What is the value of $g(-2) + g(2)$? [4 points]

① 30 ② 32 ③ 34 ④ 36 ⑤ 38

Short-Answer Questions

16. What is the value of the real number x satisfying the equation $\log_2(x-3) = \log_4(3x-5)$? [3 points]

17. For a polynomial function $f(x)$, if $f'(x) = 9x^2 + 4x$ and $f(1) = 6$, what is the value of $f(2)$? [3 points]

Mathematics Section

7

18. Let $\{a_n\}$ be a sequence satisfying

$$a_n + a_{n+4} = 12$$

for all natural numbers n . What is the value of $\sum_{n=1}^{16} a_n$?

[3 points]

19. For a positive constant a , let the function $f(x)$ be defined as

$$f(x) = 2x^3 - 3ax^2 - 12a^2x.$$

If the local maximum value of $f(x)$ is $\frac{7}{27}$, what is the value of $f(3)$? [3 points]

20. Let k be the x -coordinate of the intersection point of the curve $y = \left(\frac{1}{5}\right)^{x-3}$ and the line $y = x$. A function $f(x)$ defined on the set of all real numbers satisfies the following conditions:

$$f(x) = \left(\frac{1}{5}\right)^{x-3} \text{ and } f(f(x)) = 3x \text{ for all real numbers } x > k.$$

What is the value of $f\left(\frac{1}{k^3 \times 5^{3k}}\right)$? [4 points]

21. For integers a and b such that function

$f(x) = x^3 + ax^2 + bx + 4$ satisfies the following condition, what is the maximum value of $f(1)$? [4 points]

For all real numbers α , the limit $\lim_{x \rightarrow \alpha} \frac{f(2x+1)}{f(x)}$ exists.

22. For all sequences $\{a_n\}$ with integer terms that satisfy the following conditions, what is the sum of all possible values of $|a_1|$? [4 points]

(a) For all natural numbers n ,

$$a_{n+1} = \begin{cases} a_n - 3 & (\text{if } |a_n| \text{ is odd}) \\ \frac{1}{2}a_n & (\text{if } a_n = 0 \text{ or } |a_n| \text{ is even}) \end{cases}$$

(b) The minimum natural number m satisfying

$$|a_m| = |a_{m+2}| \text{ is } 3.$$

Session 2

Mathematics Section (Calculus)

Multiple-Choice Questions

23. What is the value of $\lim_{x \rightarrow 0} \frac{3x^2}{\sin^2 x}$? [2 points]

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

24. What is the value of $\int_0^{10} \frac{x+2}{x+1} dx$? [3 points]

① $10 + \ln 5$ ② $10 + \ln 7$ ③ $10 + 2\ln 3$
④ $10 + \ln 11$ ⑤ $10 + \ln 13$

25. For a sequence $\{a_n\}$, if $\lim_{n \rightarrow \infty} \frac{na_n}{n^2+3} = 1$, what is the value of $\lim_{n \rightarrow \infty} (\sqrt{a_n^2+n} - a_n)$? [3 points]

① $\frac{1}{3}$ ② $\frac{1}{2}$ ③ 1 ④ 2 ⑤ 3

26. As shown in the figure, there is a solid whose base is the region bounded by the curve $y = \sqrt{\frac{x+1}{x(x+\ln x)}}$, the x -axis, and the lines $x=1$ and $x=e$. If every cross-section of this solid perpendicular to the x -axis is a square, what is the volume of this solid? [3 points]

① $\ln(e+1)$ ② $\ln(e+2)$ ③ $\ln(e+3)$
 ④ $\ln(2e+1)$ ⑤ $\ln(2e+2)$

Mathematics Section (Calculus)

3

27. For a cubic function $f(x)$ with a leading coefficient of 1, let the function $g(x)$ be defined as

$$g(x) = f(e^x) + e^x.$$

If the tangent line to the curve $y = g(x)$ at the point $(0, g(0))$ is the x -axis and the function $g(x)$ has an inverse function $h(x)$, what is the value of $h'(8)$? [3 points]

① $\frac{1}{36}$ ② $\frac{1}{18}$ ③ $\frac{1}{12}$ ④ $\frac{1}{9}$ ⑤ $\frac{5}{36}$

28. For a function $f(x)$ differentiable on the set of all real numbers, its derivative $f'(x)$ is given by

$$f'(x) = -x + e^{1-x^2}.$$

For a positive constant t , let $g(t)$ be the area of the region bounded by the tangent line to the curve $y = f(x)$ at the point $(t, f(t))$, the curve $y = f(x)$, and the y -axis. What is the value of $g(1) + g'(1)$? [4 points]

① $\frac{1}{2}e + \frac{1}{2}$ ② $\frac{1}{2}e + \frac{2}{3}$ ③ $\frac{1}{2}e + \frac{5}{6}$
④ $\frac{2}{3}e + \frac{1}{2}$ ⑤ $\frac{2}{3}e + \frac{2}{3}$

Short-Answer Questions

29. Let $\{a_n\}$ be a geometric sequence satisfying

$$\sum_{n=1}^{\infty} (|a_n| + a_n) = \frac{40}{3}, \quad \sum_{n=1}^{\infty} (|a_n| - a_n) = \frac{20}{3}$$

What is the sum of all natural numbers m satisfying the inequality $\lim_{n \rightarrow \infty} \sum_{k=1}^{2n} \left((-1)^{\frac{k(k+1)}{2}} \times a_{m+k} \right) > \frac{1}{700}$? [4 points]

30. For two constants a ($1 \leq a \leq 2$) and b , the function $f(x) = \sin(ax + b + \sin x)$ satisfies the following conditions:

(a) $f(0) = 0, f(2\pi) = 2\pi a + b$

(b) The minimum positive value of t satisfying $f'(0) = f'(t)$ is 4π .

Let A be the set of all values of α in the open interval $(0, 4\pi)$ such that $f(x)$ has a local maximum at $x = \alpha$. Let n be the number of elements in set A , and let α_1 be the smallest element of A . If $n\alpha_1 - ab = \frac{q}{p}\pi$, what is the value of $p+q$? (Note: p and q are coprime natural numbers.) [4 points]

* Checklist

- Please ensure that you have correctly filled in (marked) the required information in the appropriate sections of the answer sheet.
- The 'Elective Subject (Geometry)' questions follow; please verify that this is the subject you have selected.