Riemann Integration

2025 summer

Minjun Kim mikanebi0@yonsei.ac.kr mikane.net

August 9, 2025

1 Riemann Integration

As we know, the first motivation of integration started with measuring some areas. Suppose that we want to measure the area enclosed by $y=\frac{1}{2}x^2$, x=2, x-axis and y-axis. Our idea was approximating its area by some finite rectangles as the following figure.

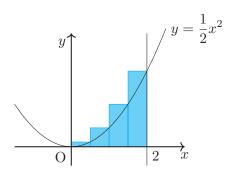


Figure 1

Given an interval [a, b] and continuous real-valued function f, the classical approach of calculating

$$\int_{a}^{b} f(x)dx$$

is to divide the interval into n subintervals

$$[x_0, x_1], \cdots, [x_{n-1}, x_n]$$

where

$$x_1 - x_0 = \dots = x_n - x_{n-1} = \Delta x$$
 and $x_0 < x_1 < \dots < x_n$.

and to sample some value $x_i^* \in [x_i, x_{i+1}]$, so that we have the following estimate.

$$\sum_{i=0}^{n-1} \Delta x f(x_i^*) \approx \int_a^b f(x) dx$$

Taking the limit of $n \to \infty$, we have the elementary definition of the Riemann integration, that is,

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{\infty} \Delta x f^{*}(x_{i}).$$

In this section our goal is to explore how the Riemann integral is defined in the contemporary setting in \mathbb{R}^d . Starred(*) items deal with the case of $d \geq 2$, which may be omitted on first reading if you feel pressured.

1.1 Partitions, Upper Sums and Lower Sums

Definition 1 (*). A rectangle

$$R = [a_1, b_1] \times \cdots \times [a_d, b_d]$$

is the Cartesian product of d closed and bounded intervals.

Definition 2. The length of the interval $[a,b] \subset \mathbb{R}$, denoted by |[a,b]|, is defined as b-a.

Definition 3 (*). The volume of the rectangle $R \subset \mathbb{R}^d$, denoted by |R|, is defined as

$$|R| = (b_1 - a_1) \times \cdots \times (b_d - a_d)$$

where $R = [a_1, b_1] \times \cdots \times [a_d, b_d]$.

The first step to evaluate Riemann integrals is *partitioning* the given rectangular domain so that we may sample some value from each subrectangle.

Definition 4. For a given interval [a, b], a partition of [a, b] is a finite set

$$P = \{x_0, x_1, \cdots, x_n\}$$

where $a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$.

Each of the intervals $[x_i, x_{i+1}]$ is called a subinterval determined by P.

Figure 2: An evenly spaced partition of [0, 3].

Figure 3: A partition of [0, 3].

Note that the partition of an interval or a rectangle does not have to be evenly spaced. Moreover it seems natural to extend the definition of partition to \mathbb{R}^d as follows.

Definition 5 (*). More generally, for a given rectangle $R = [a_1, b_1] \times \cdots \times [a_d, b_d]$, a partition of R is an d-tuple

$$P = (P_1, \cdots, P_d)$$

where P_i is a partition of the interval $[a_i, b_i]$.

The rectangle

$$R' = I_1 \times \cdots \times I_d$$

is called a subrectangle determined by P where each I_i is a subinterval determined by P_i . We denote $\mathcal{P}(R, P)$ the set of all subrectangles of R determined by P.

Definition 6. For partitions

$$P = (P_1, \dots, P_d)$$
 and $P' = (P'_1, \dots, P'_d)$

of a rectangle R, P' is a refinement of P if $P'_i \subset P_i$ for each $1 \leq i \leq d$.

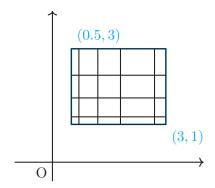


Figure 4: A partition of $[0.5, 3] \times [1, 3]$

Definition 7. Let $f:[a,b] \to \mathbb{R}$ be a bounded function and P be a partition of [a,b]. The **upper sum** U(f,P) and **the lower sum** L(f,P) is defined as

$$U(f,P) = \sum_{i=0}^{n-1} \left(\sup_{x \in [x_i, x_{i+1}]} f(x) \right) (x_{i+1} - x_i),$$

$$L(f,P) = \sum_{i=0}^{n-1} \left(\inf_{x \in [x_i, x_{i+1}]} f(x) \right) (x_{i+1} - x_i).$$

Definition 8 (*). Moreover, assume that $R \subset \mathbb{R}^d$ is a rectangle. Let $f: R \to \mathbb{R}$ be a bounded function and P be a partition of R. The **upper sum** U(f,P) and **the lower sum** L(f,P) is defined as

$$U(f,P) = \sum_{R' \in \mathcal{P}(R,P)} \left(\sup_{x \in R'} f(x) \right) |R'|,$$

$$L(f,P) = \sum_{R' \in \mathcal{P}(R,P)} \left(\inf_{x \in R'} f(x) \right) |R'|.$$

Proposition 9. Let $R \subset \mathbb{R}^d$ be a open and bounded set and P be a partition of R. If P' is a refinement of P, then

$$L(f,P) \le L(f,P') \le U(f,P') \le U(f,P)$$

for all bounded function $f: R \to \mathbb{R}$.

Proof. Obvious.

1.2 Riemann Integrable

Definition 10. Let $f:[a,b] \to \mathbb{R}$ be a bounded function. **An upper integral** of f and **a lower integral** of f over [a,b] is defined as

$$\overline{\int_{a}^{b}} f = \sup_{P} U(f, P)$$

$$\underline{\int_a^b} f = \inf_P L(f,P)$$

where P is the partition of [a, b]. f is **Riemann-integrable** if

$$\overline{\int_{a}^{b}} f = \int_{a}^{b} f$$

and we denote the common value of upper and lower integral by $\int_a^b f$ and $\mathcal{R}([a,b])$ the set of Riemann-integrable function on the interval [a,b].

Indeed the same argument works in \mathbb{R}^d with $d \geq 2$, from our observation that so an interval is a rectangle itself.

Definition 11 (*). Let $R \subset \mathbb{R}^d$ a rectangle and $f: R \to \mathbb{R}$ be a bounded function. An upper integral of f and a lower integral of f over R is defined as

$$\overline{\int_{a}^{b}} f = \sup_{P} U(f, P)$$

$$\int_{a}^{b} f = \inf_{P} L(f, P)$$

where P is the partition of [a,b]. f is **Riemann-integrable** on R if

$$\overline{\int_{R}} f = \int_{R} f$$

and we denote the common value of upper and lower integral by $\int_R f$ and $\mathcal{R}(R)$ the set of Riemann-integrable function on the rectangle R.

Exercise 1. Define

$$f(x) = \begin{cases} 1 & (x \in \mathbb{Q}) \\ 0 & (x \in \mathbb{R} \setminus \mathbb{Q}) \end{cases}$$

and

$$g(x) = \begin{cases} \frac{1}{q} & \left(x \in \mathbb{Q} \setminus \{0, 1\}, x = \frac{p}{q}, \gcd(p, q) = 1 \right) \\ 0 & (\text{otherwise}) \end{cases}$$

on [0,1]. Show that $f \notin \mathcal{R}([0,1])$ but $g \in \mathcal{R}([0,1])$.

Theorem 12. Suppose that $f,g \in \mathcal{R}([a,b])$ and $k \in \mathbb{R}$ then the followings are satisfied.

1.
$$kf \in \mathcal{R}([a,b]), \int_a^b kf = k \int_a^b f.$$

2.
$$f + g \in \mathcal{R}([a, b]), \int_a^b (f + g) = \int_a^b f + \int_a^b g.$$

3. If
$$f(x) \le g(x)$$
 on $[a, b]$, then $\int_a^b f \le \int_a^b g$.

4. If
$$f \in \mathcal{R}([b,c])$$
, then $f \in \mathcal{R}([a,c])$ and $\int_a^b f + \int_b^c f = \int_a^c f$.

5.
$$|f| \in \mathcal{R}([a,b]), \left| \int_a^b f \right| \le \int_a^b |f|.$$

Proof. The proof is rather elementary so we skip the details.