A Brief Introduction to Real Analysis

Minjun Kim mikanebi0@yonsei.ac.kr mikane.net

June 14, 2025

Preface

우울해서, 너무 숨이 막혀서, 도피하고 싶었기에 만들었습니다. 내일의 나는 오늘의 나보다는 나았으면. 가슴이 답답해서 숨을 쉴 수가 없다. 부디 이 집합들이 나를 치유하게 해 주소서.

Contents

1	The	Real N	umber System	7
2	Poin	t-Set To	opology	9
	2.1	Open a	and Closed	9
		2.1.1	Metric Space	9
		2.1.2	Open and Closed Sets	9
		2.1.3	Limit Points	11
		2.1.4	Open and Closed Relative	12
		2.1.5	Closure and Boundary	12
		2.1.6	Examples	13
	2.2	Seque	nces and Series	16
		2.2.1	Sequences	16
		2.2.2	Spaces	18
		2.2.3	Properties of Bounded and Cauchy Sequences	19
		2.2.4	Series	20
	2.3	Compa	actness	21
		2.3.1	Compact Sets	21
		2.3.2	Lebesgue Number	22
		2.3.3	Totally Bounded Sets	23
		2.3.4	Bolzano-Weierstrass Theorem	24
		2.3.5	Heine-Borel Theorem	26
		2.3.6	Nested Set Property	27
	2.4	Conne	ctedness	28
		2.4.1	Path-Connected Sets	28
		2.4.2	Connected Sets	28
3	Con	tinuous	Mappings	31
	3.1	Contin	$uity \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	31
	3.2	Unifor	m Continuity	31

4	Diff	erential	ole Mappings	33		
5	Rien	nann-S	tieltjes Integrals	35		
	5.1	Riema	nn Integration of Functions of One Variable	35		
		5.1.1	Partitions, Upper Sums and Lower Sums	35		
		5.1.2	Riemann Integrable	37		
	5.2	Funda	mental Theorem of Calculus	39		
6	Sequ	iences a	and Series of Functions	41		
	6.1	Unifor	m Convergence	41		
		6.1.1	Convergence of a Sequence of Functions	41		
		6.1.2	Cauchy Criterion	42		
		6.1.3	Weierstrass M Test	42		
		6.1.4	Properties of Uniform Convergence	43		
	6.2	Spaces	s of Continuous Functions	44		
		6.2.1	Arzela-Ascoli Theorem	44		
	6.3 Contraction Mappings					
		6.3.1	Contraction Mapping Principle	46		
		6.3.2	Fredholm Equations	48		
		6.3.3	Volterra Integral Equations	48		
	6.4 Series and Approximations					
		6.4.1	Bernstein Polynomials	49		
		6.4.2	Stone-Weierstrass Theorem	50		
		6.4.3	Abel's Test	52		
		6.4.4	Dirichlet's Test	53		
7	Spec	ial Fun	actions and Summability of Series	55		
	Series	55				
	7.2 Summability of Series					
		7.2.1	Cesaro Summability	56		
		7.2.2	Abel Summability	57		
8	The	Lebesg	ue Theory	59		
9	Fun	ctions o	of Several Variables	61		
10	Vect	or Ana	lysis	63		

Chapter 1 | The Real Number System

Chapter 2 | Point-Set Topology

2.1 Open and Closed

2.1.1 Metric Space

Definition 2.1 (distance). Distance is a real-valued function $d: X \times X \to \mathbb{R}^+_0$ such that

- $d \ge 0$, d(x, y) = 0 if and only if x = y
- d(x,y) = d(y,x)
- $d(x,y) \le d(x,z) + d(y,z)$

Definition 2.2 (metric space). For a set X, if the distance function d is defined on X, we call (X, d) a **metric space**. We also say that X is **metric**.

Definition 2.3 (an open ball centred at x and its radius r).

$$B_{x,r} = \{ y \in M \, | \, d(x,y) < r \}$$

2.1.2 **Open and Closed Sets**

Let (X, d) be a metric space.

Definition 2.4 (open set). We say that $A \subset X$ is **open** if for every $x \in A$, there exists r > 0 such that $B_{x,r} \subset A$.

Definition 2.5 (closed set). We say that $A \subset X$ is **closed** if A^C is open, i.e., for every $x \in A^C$, there exists r > 0 such that $B_{x,r} \subset A^C$.

Definition 2.6 (interior point). We say that $x \in A$ is an **interior point** of A if there exists an open set V such that $x \in V \subset A$. We denote A^O a set of all interior points of A.

Union and Intersections

Theorem 2.7. Consider the collection of open sets $\{U_{\alpha} | \alpha \in I\}$, where *I* is an uncountable index set.

∪_{α∈I} U_α is open.
∩_{i=1}ⁿ U_i is open.

Proof. • For every $x \in \bigcup_{\alpha \in I} U_{\alpha}$, there exists $\beta \in I$ such that $x \in U_{\beta}$. Since U_{β} is open, there is r > 0 such that

$$B_{x,r} \subset U_{\beta} \subset \bigcup_{\alpha \in I} U_{\alpha}$$

, implying that $\bigcup_{\alpha \in I} U_{\alpha}$ is open.

• For every $x \in \bigcap_{i=1}^{n} U_i$, $x \in U_i$ for all $1 \le i \le n$. Since U_i is open for each i, there exists $r_i > 0$ such that

$$B_{x,r_i} \subset U_i.$$

Take $r = \min \{r_i : 1 \le i \le n\}$, then it follows that $B_{x,r} \subset U_i$ for every *i*, implying

$$x \in B_{x,r} \subset \bigcap_{i=1}^n U_i$$

, therefore $\bigcap_{i=1}^{n} U_i$ is open.

Theorem 2.8. Consider the collection of closed sets $\{V_{\alpha} | \alpha \in I\}$, where *I* is an uncountable index set.

Proof. Trivial by De Morgan's Law.

2.1.3 Limit Points

Let (X, d) be a metric space.

Definition 2.9 (limit point). We say that x is an **limit point** of A whenever any open neighbourhood of x has a point in A other than x.

i.e., for every open neighbourhood V of x,

$$V \cap (M \setminus \{x\}) \neq \emptyset.$$

Definition 2.10. We denote A' a set of all limit points of A.

Definition 2.11 (isolated point). We say that x is an **isolated point** of A if it is not a limit point of A.

Definition 2.12 (closed set). We say that $A \subset X$ is **closed** if A contains all of the limit points of A, i.e.,

 $A' \subset A$

Note that the definition above is **equivalent** to 2.5.

Proof. $(1 \Longrightarrow 2)$ Suppose that $x \notin A$ is an limit point of A, then $x \in A^C$. Note that $M \setminus A$ is open since A is closed by our hypothesis. Therefore $\exists r > 0$ s.t. $B_{x,r} \subset A^C$ which is contrary to the fact that x is an limit point.

 $(2 \iff 1)$ It is sufficient to show that A^C is open. Suppose that A^C is not open. Then $\exists x \in A^C$ s.t. any open neighbourhood containing x has an nonempty intersection with A, implying that $x \notin A$ but x is an limit point of A. This contradicts our hypothesis. \Box

Theorem 2.13. *X* and \emptyset are both open and closed.

Proof. It is obvious that X is open $\implies M^C = \emptyset$ is closed. $\emptyset^C = X$ is closed since it contains all of the limit points of itself. $\implies \emptyset$ is open. \Box

2.1.4 **Open and Closed Relative**

Let (X, d) be a metric space and $A \subset X$.

Definition 2.14 (open relative). We say $U \subset A$ is **open relative** to A if there exists open set $V \subset X$ such that $U = V \cap A$.

Definition 2.15 (closed relative). We say $U \subset A$ is closed relative to A if there exists closed set $F \subset X$ such that $U = F \cap A$.

2.1.5 Closure and Boundary

Definition 2.16 (closure). We define the **closure** of A denoted by \overline{A} , in three ways:

- the intersection of all closed sets containing $A : (A_1)$
- the smallest closed set containing $A: (A_2)$
- $A \cup A' : (A_3)$

and these three definitions are equivalent.

Proof. $A_1 = A_2$: Obvious.

 $(A_1 \supset A_3)$ Note that for collection $\{C_\alpha\}$ of all closed set containing A, each element satisfies that $C_\alpha \supset A$, $C_\alpha \supset B$. Hence $A_1 = \bigcap C_\alpha \supset A_3$

 $(A_2 \subset A_3)$ Claim: $\forall x \in A_2$, if $x \notin A$, then $x \in A'$.

Suppose that $\exists x \in A_2$ s.t. $x \notin A$ and $x \notin B$, that is, x is not an limit point of A. Then, \exists open neighbourhood V s.t. $x \in V$ and $V \cap (A \setminus \{x\}) = \emptyset \implies V \cap A = \emptyset$ since $x \notin A$. Then it follows that $A \subset V^C$ and V^C is closed. By the definition of A_2 , we derive $x \in A_2 \subset V^c$, which contradicts our assumption. \Box

Definition 2.17 (boundary). We define the **boundary** of A as $\partial A = bd(A) = \overline{A} \cap \overline{A^C}$

Theorem 2.18. $x \in \partial A$ iff. $\forall r > 0, B_{x,r} \cap A \neq \emptyset$ and $B_{x,r} \cap A^C \neq \emptyset$

Proof. (\Leftarrow) $\forall r > 0$, $B_{x,r} \cap A \neq \emptyset \implies x \in \overline{A}$ and $B_{x,r} \cap A^C \neq \emptyset \implies x \in \overline{A^C}$, therefore $x \in \overline{A^C} = \partial A$.

 (\implies) Consider the case of $x \in A$, then since $x \in \overline{A^C}$, x must be an limit point of A^C , implying $B_{x,r} \cap A^C \neq \emptyset$. Notice that it is trivial that $B_{x,r} \cap A \neq \emptyset$. WLOG, we can prove the case of $x \in A^C$.

2.1.6 Examples

Here are some useful properties related to what we have learnt: Let (X, d) be a metric space.

Example 2.19. 1. $(A^O)^C = cl(A^C)$

- 2. $(\overline{A})^C = int(A^C)$
- 3. $\partial A = \overline{A} \setminus \operatorname{int} A$

We observe that A^O , ∂A , and $int(A^C)$ are a **partition** of X. i.e., these three sets are disjoint and $A^O \cup \partial A \cup int(A^C) = X$.

Proof. 1. $((A^O)^C \subset \overline{A^C}) \forall x \in (\text{int } A)^C, \forall r > 0, B_{x,r} \not\subset A \implies B_{x,r} \cap A^C \neq \emptyset$ which implies

 $x \in A^C$ or $x \in (A^C)'$ therefore $x \in cl(A^C)$. $((A^O)^C \supset cl(A^C)) \forall x \in cl(A^C), x \in A^C$ or $x \in (A^C)'$. It suffices to consider the case of $x \in (A^C)'$. Then, $\forall r > 0, B_{x,r} \cap A^C \neq \emptyset \implies \exists r > 0$ s.t. $B_{x,r} \subset A$, hence $x \in (A^O)^C$.

2	
4	•

Example 2.20. 1. $\partial A \subset A^C \iff A$: open

- 2. $\partial A \subset A \iff A$: closed
- 3. $\partial A = \emptyset \iff$ A is both open and closed.

Example 2.21. A is bounded if and only if $\exists M \ge 0$ s.t. $\forall x, y \in A, d(x, y) \le M$.

Proof.

Definition 2.22 (diameter). We define **diameter of** *A* as

diam
$$A := \begin{cases} \sup \{d(x,y) \mid x, y \in A\} & (A \neq \emptyset) \\ 0 & (A = \emptyset) \end{cases}$$

2.2 Sequences and Series

2.2.1 Sequences

Let (X, d) be a metric space.

Definition 2.23 (convergence). For the sequence $x_n \in X$, we say x_n converges to $x \in X$, or $\lim_{n \to \infty} x_n = x$ if for every open set V containing x, there exists $n_0 \in \mathbb{N}$ such that

$$n \ge n_0 \implies x_n \in V.$$

Note that $x_n \in X$ converges to $x \in X$ if and only if for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$n \ge n_0 \implies d(x_n, x) < \varepsilon.$$

Theorem 2.24. $A \subset X$ is closed if and only if for every sequence $x_n \in A$ that converges in X, $\lim_{n \to \infty} x_n \in A$.

Proof. (\implies) Suppose $\lim_{x\to\infty} x_n = x \notin A$, then $x \in A' \setminus A = \emptyset$ (contradiction) (\iff) It suffices to show that $A' \subset A$. Suppose that $x \in A'$, that is, \forall open neighborhood V of $x, V \cap A \neq \emptyset$. For \forall open neighborhood V of x, we can find $n \in \mathbb{N}$ s.t. $x_n \neq x$ and $x_n \in A$ implying that $x \in A$ hence A is closed.

Theorem 2.25. For a set $A \subset X$, $x \in \overline{A}$ iff. $\exists x_n \in A$ converges to x.

Proof. It suffices to consider the case of $x \in \overline{A} \setminus A$. (\Longrightarrow) $\forall x \in A'$, \forall open neighborhood V of $x, V \cap A \neq \emptyset$. Thus we can construct $x_n \in A$ s.t. for $n \in \mathbb{N}, x_n \in B_{x,\frac{1}{n}} \cap A$ implying $x_n \to x$.

 $(\iff) \forall$ open neighborhood V of $x, n_0 \in \mathbb{N}$ s.t. $n_0 \ge n$ implies $x_n \in V$. Then $V \cap \{x_n \mid n \ge n_0\} \neq \emptyset \implies V \cap A \neq \emptyset$ which results that x is an limit point of A. \Box

Definition 2.26 (cluster point). We say x a cluster point of x_n if $\forall \varepsilon > 0$, there exists infinitely many n such that $d(x_n, x) < \varepsilon$.

Theorem 2.27. x is a cluster point of x_n iff. there is a subsequence of x_n which converges to x.

Cauchy Sequences and Complete Metric Space

Let (X, d) be a metric space.

Definition 2.28 (Cauchy sequence). For a metric space X, we say $x_n \in X$ a Cauchy sequence if $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ s.t. $m, n \ge n_0$ implies $d(x_m, x_n) < \varepsilon$.

Definition 2.29. We say that a metric space X is **complete** if every Cauchy Sequence in X converges to a point in X.

Example 2.30. Show that every Cauchy sequence in metric space is convergent. Give an example of metric spaces $X, A \subset X$ such that Cauchy sequence $x_n \in A$ converges in X but not in A.

2.2.2 Spaces

Let K be a vector space.

Normed Spaces

Definition 2.31 (normed spaces). A **norm** is a function $|||| : K \to \mathbb{R}_0^+$ such that satisfies the followings:

- 1. $||x|| \ge 0$ for $\forall x \in K$
- 2. ||x|| = 0 iff. x = 0
- 3. $\|\lambda x\| = |x| \|x\|$ for $\forall x \in K$ and scalar λ
- 4. $||x + y|| \le ||x|| + ||y||$

We call (K, ||||) a normed space.

Theorem 2.32. A normed space is a metric space.

The proof is rather elementary so we left it as an exercise.

Inner Product Spaces

Definition 2.33 (inner product space). An **inner product** is a function $\langle \cdot, \cdot \rangle : K \times K \to \mathbb{R}$ such that satisfies the followings:

- 1. $\langle x, x \rangle \ge 0$ for $\forall x \in K$
- 2. $\langle x, x \rangle = 0$ iff. x = 0
- 3. $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$ for $\forall x, y \in K$ and $\lambda \in \mathbb{R}$.
- 4. $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$ for $\forall x, y, z \in K$
- 5. $\langle x, y \rangle = \langle y, x \rangle$ for $\forall x, y \in K$

We call $(K, \langle \cdot, \cdot \rangle)$ an inner product space.

Cauchy-Schwarz Inequality 2.34. For an inner product space $(K, \langle \cdot, \cdot \rangle), |\langle x, y \rangle| \le (\langle x, x \rangle)^{\frac{1}{2}} (\langle y, y \rangle)^{\frac{1}{2}}$. *Proof.* Assume that $x, y \ne 0$. For $\forall \alpha \in \mathbb{R}$, we have

$$0 \le \langle \alpha x + y, \alpha x + y \rangle = \alpha^2 \langle x, x \rangle + 2\alpha \langle x, y \rangle + \langle y, y \rangle$$

Therefore we derive that $(\langle x, y \rangle)^2 - \langle x, x \rangle \langle y, y \rangle \leq 0.$

Theorem 2.35. An inner product space is a normed space.

We can derive the triangle inequality from Cauchy-Schwarz inequality so that a norm is derived by inner product space.

2.2.3 Properties of Bounded and Cauchy Sequences

Definition 2.36 (bounded sequence). For a normed space, we say a sequence x_n is **bounded** if $\exists X$ s.t. $||x_n|| \leq X$ for $\forall n$.

Theorem 2.37. Every convergent sequence in a metric space is a Cauchy sequence.

Proof. Suppose x_n be a sequence s.t. $\lim_{n \to \infty} x_n = x$. For $\varepsilon > 0$, $\exists n_1 > 0$ s.t. $n \ge n_1$ implies $d(x, x_n) < \frac{\varepsilon}{2}$. Take $n_0 = n_1$, then $\forall X, n > n_0, d(x_X, x_n) \le d(x_X, x) + d(x_n, x) < \epsilon$. \Box

Theorem 2.38. Every Cauchy sequence in a metric space is bounded.

Proof. Suppose x_n be a Cauchy sequence. Then, $\exists n_0 \text{ s.t. } n, m \ge n_0$ implies $d(x_n, x_m) < 1$. 1. Note that $d(x_n, x_{n_0}) < 1 \implies d(x_n, 0) < d(x_{n_0}) + 1$ for every $n \ge n_0$. Take $M = \max\{\|x_k\| \mid 1 \le k \le n_0\} + 1$, which follows that $\|x_n\| \le M$ for all n. \Box

2.2.4 Series

2.3 Compactness

2.3.1 Compact Sets

Let (X, d) be a metric space.

Definition 2.39 (sequentially compact). We say $A \subset X$ is sequentially compact if every sequence in A has a subsequence converges to a point in A.

Definition 2.40 (cover). For a set $A \subset X$, we say a collection of sets $\{U_{\alpha}\}_{\alpha \in I}$ a cover of A if $A \subset \bigcup_{\alpha \in I} U_{\alpha}$.

Definition 2.41 (subcover). We say a subcollection of a cover of A a subcover of A.

Definition 2.42 (open cover). We call a cover an open cover if each element of it is open.

Definition 2.43 (compact). $A \subset X$ is **compact** if every open cover of A has a finite subcover.

2.3.2 Lebesgue Number

Definition 2.44 (Lebesgue number). We say r > 0 a Lebesgue number of A if for an open cover $\{U_{\alpha}\}_{\alpha \in I}$ of $A, \forall x \in A, B_{x,r} \subset U_k$ for some k.

Theorem 2.45 (existence of Lebesgue number). If A is sequentially compact, then Lebesgue number r exists.

Proof. Suppose not, then $\exists \text{ seq } x_n \in A \text{ s.t. } B_{x_n,\frac{1}{n}} \notin U_k$ for any k. By our hypothesis that A is seq'ly cpt, $\exists \text{ subseq } x_{n_k} \text{ of } x_n \text{ s.t. } x_{n_k} \to x \in A$. Note that

• $x \in U_l$ for some $l \implies \exists r_1 > 0$ s.t. $x \in B_{x,r_1} \subset U_l$.

• since
$$x_{n_k} \to x$$
, $\exists k_0$ s.t. $k \ge k_0$ implies $x_{n_k} \in B_{x,\frac{r_1}{2}}$ and $\frac{1}{n_k} < \frac{r_1}{2}$.

Then we obtain

$$B_{x_{n_k},\frac{1}{n_k}} \subset B_{x_{n_k},\frac{r_1}{2}} \subset B_{x,r_1} \subset U_l$$

which contradicts our assumption.

2.3.3 Totally Bounded Sets

Definition 2.46 (totally bounded). We say a set $A \subset X$ is **totally bounded** if $\forall r > 0$, there exists finite set $\{x_1, x_2, \dots, x_n\} \subset K$ such that $A \subset \bigcup_{i=1}^n B_{x_i,r}$.

Theorem 2.47. If A is sequentially compact, then A is totally bounded.

Proof. Suppose not. Let r > 0 be given. We can construct seq $x_n \in A$ by

- taking some $x_1 \in A$ and
- $\forall k \in \mathbb{N}$, choosing x_{k+1} s.t. $d(x_{k+1}, x_m) > r$ for every $m \leq k$

Such x_{k+1} exists for every k because A is not totally bdd, which follows that it is unable to cover A by finite numbers of open balls with radius r. Suppose that subseq x_{n_k} of x_n converges, then $\forall r_1 > 0$, $\exists n_0$ s.t. $n \ge n_0$ implies $x_n \in B_{x,r_1}$. Take $r_1 = \frac{r}{2}$ then it contradicts our supposition by our construction of x_n . Thus we conclude that

• $\not\exists$ convergent subseq x_{n_k} of x_n

, which contradicts our assumption.

2.3.4 Bolzano-Weierstrass Theorem

Theorem 2.48 (Bolzano-Weierstrass). A subset of metric space is compact if and only if it is sequentially compact.

Proof. (\implies) Suppose not, then $\exists \text{ seq } x_n \text{ s.t. } \not\exists \text{ convergent subseq } x_{n_k}$.

Theorem 2.49. A metric space X is compact iff. it is complete and totally bounded.

Proof. (\implies) Since X is cpt, it is seq'ly cpt, which follows that X is totally bdd. Note that every Cauchy seq x_n in X is convergent, which implies $x_n \to x \in X$ by our hypothesis that X is seq'ly cpt. Therefore X is complete.

 (\Leftarrow) It suffices to show that X is seq'ly cpt. For every sequence $x_n \in X$, WLOG, it is enough to assume that $x_i \neq x_j$ if $i \neq j$. We want to find some convergent subseq of x_n . Since X is totally bounded, $\forall m \in \mathbb{N}$, we can construct some finite set $A_m = \{y_1^m, y_2^m, \dots\}$ such that $X \subset \bigcup_{y \in A_m} B_{y,\frac{1}{m}}$. For each m, we can choose a_m s.t. $\exists \infty x_n \in B_{y_{m,a_m},\frac{1}{m}}$ and m

$$\bigcap_{i=1} B_{y_{i,a_{i}},\frac{1}{i}} \neq \emptyset. \text{ Take } x_{n_{m}} \in B_{y_{m,k}} (미완성)$$

2.3.5 Heine-Borel Theorem

Theorem 2.50 (Heine-Borel theorem). $A \subset \mathbb{R}^n$ is compact iff. A is closed and bounded.

2.3.6 Nested Set Property

Definition 2.51 (finite intersection property). In a metric space X, we say a collection $\{V_{\alpha}\}$ of closed sets in X has the **finite intersection property** if the intersection of the any finite number of V_{α} with A is nonempty. i.e.,

$$\bigcap_{i=1}^n V_i \neq \emptyset$$

Theorem 2.52. A is compact iff. for all collection $\{V_{\alpha}\}$ of finite intersection property, $A \cap \bigcap_{\alpha \in I} V_{\alpha} \neq \emptyset$.

Proof. (\Rightarrow) Suppose not, that is, $A \cap V_{\alpha} = \emptyset$. Let $U_{\alpha} := V_{\alpha}^{C}$, then $A \subset \bigcup_{\alpha \in I} U_{\alpha}$. Since A is compact, \exists finite subcover $\{U_{\alpha_{i}}\}_{i=1}^{n}$ of A, implying $A \cap \bigcap_{i=1}^{n} V_{\alpha_{i}} = \emptyset$ which violates the finite intersection property.

(\Leftarrow) For an open cover $\{U_{\alpha}\}_{\alpha \in I}$ of A, let $V_{\alpha} := U_{\alpha}$

	٦
	1
	1

2.4 Connectedness

2.4.1 Path-Connected Sets

Definition 2.53 (path-connected). We say that a set A is **path-connected** if $\forall x, y \in A, \exists$ continuous function $f : [0, 1] \rightarrow A$ s.t. f(0) = x and f(1) = y.

2.4.2 Connected Sets

Definition 2.54 (disconnected). • We say a set A is **disconnected** if \exists two open sets U, V satisfying these properties:

- $U \cap A \neq \emptyset \text{ and } V \cap A \neq \emptyset$
- $A \subset U \cup V$

$$- (U \cap A) \cap (V \cap A) = \emptyset$$

or, equivalently,

• We say a set A is **disconnected** if ∃ two disjoint open sets U, V satisfying these properties:

 $- U \cap A \neq \emptyset \text{ and } V \cap A \neq \emptyset$

$$- \ A \subset U \cup V$$

in these case, we say U and V separate A.

Definition 2.55 (connected). We say a set A is **connected** if it is not disconnected.

Theorem 2.56. Path-connectedness implies connectedness, i.e., if a set *A* is path-connected then *A* is connected.

Proof.

Lemma 2.57. [0, 1] is connected.

Proof. Suppose not, then \exists open sets U, V such that

- 1. $U \cap A \neq \emptyset$ and $V \cap A \neq \emptyset$
- 2. $A \subset U \cup V$
- 3. $(U \cap A) \cap (V \cap A) = \emptyset$

WLOG, it suffices to consider the case of $0 \in U$ and $1 \in V$. Denote

$$c := \sup \{ x \in [0, 1] \mid x \in U \cap A \}$$

, then it follows that $c \notin U$ and $c \notin V$ which leads to contradiction.

Suppose not, then \exists open sets U, V disconnects A. Choose $x \in U \cap A, y \in V \cap A$ and we could construct function $f : [0,1] \to A$ such that f(0) = x and f(1) = y. \Box

CHAPTER 2. POINT-SET TOPOLOGY

Chapter 3 | Continuous Mappings

- 3.1 Continuity
- **3.2 Uniform Continuity**

Chapter 4 | Differentiable Mappings

Chapter 5 | Riemann-Stieltjes Integrals

5.1 Riemann Integration of Functions of One Variable

5.1.1 Partitions, Upper Sums and Lower Sums

Definition 5.1 (partitions). For a given interval [a, b], we say the finite set

$$\mathcal{P} = \{x_0, x_1, \cdots, x_n\}, \quad a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$$

a partition of [a, b].

Let $f : [a, b] \to \mathbb{R}$ be a bounded function and \mathcal{P} be a partition of [a, b].

Definition 5.2 (upper sums). We define a **upper sum** $\mathcal{U}_{\mathcal{P}} = \mathcal{U}(f, \mathcal{P})$ as

$$\mathcal{U}_{\mathcal{P}} = \sum_{i=0}^{n-1} \left(\sup_{x \in [x_i, x_{i+1}]} f(x) \right) \left(x_{i+1} - x_i \right)$$

Definition 5.3 (lower sums). We define a lower sum $\mathcal{L}_{\mathcal{P}} = \mathcal{L}(f, \mathcal{P})$ as

$$\mathcal{L}_{\mathcal{P}} = \sum_{i=0}^{n-1} \left(\sup_{x \in [x_i, x_{i+1}]} f(x) \right) \left(x_{i+1} - x_i \right)$$

Definition 5.4. For partitions \mathcal{P} and \mathcal{P}' of [a, b], we say \mathcal{P}' is **finer** than \mathcal{P} if

 $\mathcal{P}\subset \mathcal{P}'$

or, we say \mathcal{P}' a **refinement** of \mathcal{P} .

Theorem 5.5. If \mathcal{P}' is a refinement of \mathcal{P} , then

$$\mathcal{L}_{\mathcal{P}} \leq \mathcal{L}_{\mathcal{P}}' \leq \mathcal{U}_{\mathcal{P}}' \leq \mathcal{U}_{\mathcal{P}}$$

Proof. Trivial.

5.1.2 Riemann Integrable

Let $f : [a, b] \to \mathbb{R}$ be a bounded function.

Definition 5.6. We say

$$\overline{\int_{a}^{b}} f = \sup \left\{ \mathcal{U}_{\mathcal{P}} \, | \, \mathcal{P} \text{ is a partition of } [a, b] \right\}$$

an **upper integral** of f and

$$\underline{\int_{a}^{b}} f = \inf \left\{ \mathcal{U}_{\mathcal{P}} \, | \, \mathcal{P} \text{ is a partition of } [a, b] \right\}$$

a lower integral of f over [a, b].

Definition 5.7. *f* is **Riemann-integrable** if

$$\overline{\int_{a}^{b}}f = \underline{\int_{a}^{b}}f$$

and we denote the common value of upper and lower integral by $\int_a^b f$ and \mathscr{R} the set of Riemann-integrable function.

Theorem 5.8. Suppose that $f, g \in \mathscr{R}$ on [a, b], then

1.
$$\forall k \in \mathbb{R}, kf \in \mathscr{R} \text{ and } \int_{a}^{b} kf = k \int_{a}^{b} f.$$

2. $f + g \in \mathscr{R} \text{ and } \int_{a}^{b} (f + g) = \int_{a}^{b} f + \int_{a}^{b} g.$
3. $\forall x \in [a, b], \text{ if } f(x) \leq g(x), \text{ then } \int_{a}^{b} f \leq \int_{a}^{b} g.$
4. Assume that $f \in \mathscr{R} \text{ on } [b, c], \text{ then } f \in \mathscr{R} \text{ in } [a, c] \text{ and } \int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f.$

5. Assume that
$$|f| \in \mathscr{R}$$
, then $\left| \int_{a}^{b} f \right| \leq \int_{a}^{b} |f|$.

Proof. The proof is rather elementary so we skip the details.

Theorem 5.9. if $f : [a, b] \to \mathbb{R}$ is bounded and continuous except for finitely many points in [a, b], then $f \in \mathscr{R}$ on [a, b]

Theorem 5.10. if $f : [a, b] \to \mathbb{R}$ is bounded and monotonous, then $f \in \mathscr{R}$ on [a, b]

5.2 Fundamental Theorem of Calculus

Theorem 5.11 (fundamental theorem of calculus).

Chapter 6 | Sequences and Series of Functions

6.1 Uniform Convergence

6.1.1 Convergence of a Sequence of Functions

Let $f_n : A \to N$ be a sequence of functions, where (N, ρ) is a metric space.

Definition 6.1 (pointwise convergence). We say f_n converges pointwisely to f if for each $x \in A$, $\forall \varepsilon > 0$, $\exists n(x) \in \mathbb{N}$ such that $n \ge n(x)$ implies $\rho(f_n(x), f(x)) < \varepsilon$. And we denote

 $f_n \to f$ pointwisely.

Definition 6.2 (uniform convergence). We say f_n converges uniformly to f if $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ such that $n \ge n_0$ implies $\rho(f_n(x), f(x))$ for every $x \in A$. And we denote

 $f_n \to f$ uniformly.

Theorem 6.3. Suppose that $f_n \to f$ uniformly, then f is continuous.

Proof.

 $\textit{Claim. } \forall x,y \in A, \forall \varepsilon > 0, \exists \delta > 0 \textit{ such that } d(x,y) < \delta \textit{ implies } \rho(f(x),f(y)) < \varepsilon.$

$$\rho(f(x), f(y)) \le \rho\left(f(x), f_n(x)\right) + \rho\left(f_n(x), f_n(y)\right) + \rho\left(f(y), f_n(y)\right) < \epsilon$$

6.1.2 Cauchy Criterion

Theorem 6.4 (Cauchy criterion). $f_n : A \to N$ converges uniformly if and only if $\forall \varepsilon > 0, \exists n_0$ such that

$$m, n \ge n_0 \implies \rho(f_n(x), f_m(x)) < \varepsilon \ \forall x \in A.$$

Proof.

6.1.3 Weierstrass M Test

Theorem 6.5 (Weierstrass M test). Further assume that N is a complete normed space and $g_n : A \to N$.

If $||g_n(x)|| < M_n \ \forall x \in A \text{ and } \sum_{n=0}^{\infty} M_n < \infty$, then $\sum_{n=0}^{\infty} g_n$ converges uniformly.

6.1.4 **Properties of Uniform Convergence**

Theorem 6.6. Suppose that $f_n \in \mathscr{R}([a, b])$. If $f_n \to f$ uniformly on [a, b], then $f \in \mathscr{R}([a, b])$ and

$$\lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} f(x) dx.$$

Proof.

Theorem 6.7. Suppose that $\sum_{n=1}^{\infty} g_n(x)$ converges uniformly, then integration and summation can be interchanged, i.e.,

$$\int_{a}^{b} \sum_{n=1}^{\infty} g_n(x) dx = \sum_{n=1}^{\infty}$$

Theorem 6.8. Suppose that $f_n \in C^1((a, b), \mathbb{R})$. If

$$f_n \to f$$
 pointwisely and $f'_n \to g$ uniformly

, then f is differentiable and f = g.

Proof.

Theorem 6.9. Suppose that $g_n \in C^1$. If $\sum_{n=1}^{\infty} g_n$ converges pointwisely and $\sum_{n=1}^{\infty} g'_n$ converges uniformly, then $\left(\underbrace{-\infty}_{n=1} \right)' \underbrace{-\infty}_{n=1}^{\infty}$

$$\left(\sum_{n=1}^{\infty} g_n(x)\right)^{r} = \sum_{n=1}^{\infty} g'_n(x).$$

Proof.

6.2 Spaces of Continuous Functions

Let (M, d) be a metric space and $(N, \rho, || ||)$ be a complete normed space.

We denote $C = \{f : A \subset M \to N \mid f \text{ is continuous}\}$ and $C_b = \{f \in C \mid \sup_{x \in A} |f(x)| < \infty\}$. **Definition 6.10.** We say the collection of functions $\Pi = \{f_\alpha \mid \alpha \in I\}$ is **equicontinuous** if $\forall \varepsilon > 0, \exists \delta > 0, \rho(f(x), f(y)) < \varepsilon$ if $d(x, y) < \delta$ for every $f \in \Pi$.

6.2.1 Arzela-Ascoli Theorem

Theorem 6.11 (Arzela-Ascoli). Let $A \subset M$ be compact, then $\mathcal{B} \subset C_b$ is compact if and only if it is closed, pointwise compact, and equicontinuous.

Proof. (\Leftarrow) By the Volzano-Weierstrass theorem, it suffices to show that \mathcal{B} is sequentially compact.

Claim. For every sequence of functions $f_n \in \mathcal{B}$, there exists convergent subsequence of f_n .

Since A is compact, it is totally bounded, thus $\forall \delta > 0$, there is a finite set

$$C_{\delta} = \{y_{\delta_1}, y_{\delta_2}, \cdots, y_{\delta_n}\}$$
(6.1)

such that $\bigcup_{i=1}^{n} B_{y_{\delta_i},\delta} \supset A$. Let

$$C = \bigcup_{i=1}^{n} C_{\frac{1}{n}}$$

and since C is countable, we relabel it as $C = \{x_1, x_2, \dots\}$. For a sequence of functions $f_n \in \mathcal{B}$, since \mathcal{B} is pointwisely compact, we can construct a subsequence $f_{1,j}$ of f such that $f_{1,j}(x_1)$ converges. Inductively, $\forall k \in \mathbb{N}$ we construct a subsequence $f_{k+1,j}$ of $f_{k,j}$ such that $f_{k+1,j}(x_{k+1})$ converges.

Define

$$g_n = f_{n,n}$$

, then we observe $g_n(x_i)$ converges $\forall i \in \mathbb{N}$.

It is enough to finish our proof by showing that g is uniformly convergent, i.e.,

Claim. For each $x \in A$, $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ such that $m, n \ge n_0$ implies $\rho(g_n(x), g_m(x)) < \varepsilon$.

Since g_n is equicontinuous, we could choose $\delta > 0$ such that $\forall i, d(x, y) < \delta$ implies

$$\rho(g_i(x), g_i(y)) < \frac{\varepsilon}{3}.$$

Depending to our choice of δ , we construct a finite set C_{δ} as 6.1. For a given x, take $y \in C_{\delta}$ such that $d(x, y) < \delta$. Since g_i is convergent pointwisely, take $n_0 \in \mathbb{N}$ such that $n, m \ge n_0$ implies

$$\rho(g_n(y), g_m(y)) < \frac{\varepsilon}{3}.$$

Then, by the triangle inequality, we obtain

$$\rho(g_n(x), g_m(x)) \le \rho(g_n(x), g_n(y)) + \rho(g_n(y), g_m(y)) + \rho(g_m(y), g_m(x)) < \varepsilon.$$

$$(\Longrightarrow)$$

Theorem 6.12. Let $N = \mathbb{R}^d$. Assume that $\mathcal{B} \subset \mathcal{C}(A, \mathbb{R}^d)$ is equicontinuous and pointwise bounded. Then every sequence in \mathcal{B} has a uniformly convergent subsequence.

6.3 Contraction Mappings

6.3.1 Contraction Mapping Principle

Let (M, d) be a complete metric space.

Theorem 6.13 (contraction mapping principle). For the mapping $\Phi : M \to M$, if there exists a constant $k \in [0, 1)$ such that

$$\forall x, y \in M, \, d(\Phi(x), \Phi(y)) \le kd(x, y)$$

, then there is a unique fixed point x_* . i.e.,

$$\exists ! x_* \in M \quad \text{such that} \quad \Phi(x_*) = x_*.$$

Further assume that $x_0 \in M$ and $\forall n \in \mathbb{N}$, $\Phi(x_{n-1}) = x_n$, then

$$\lim_{n \to \infty} x_n = x_*$$

Proof. (Uniqueness) Suppose there exists y_* is another fixed point of Φ , then

$$d(\Phi(x_*), \Phi(y_*)) = d(x_*, y_*) \le k d(x_* y_*) \implies (1 - k) d(x_*, y_*) \le 0$$

therefore $x_* = y_*$ (contradiction).

(Existence)

Claim. x_n is Cauchy.

For a given $\varepsilon > 0$, take $n_0 = \min\left\{n \left| \frac{k^n}{1-k} d(x_0, x_1) < \varepsilon\right\}$, then

$$m > n \ge n_0 \implies d(x_n, x_m) \le \sum_{i=0}^{m-n-1} d(x_{n+i}, x_{n+i+1}) \le \sum_{i=0}^{m-n-1} k^{n+i} d(x_0, x_1) \le \frac{k^n}{1-k} d(x_0, x_1) < \varepsilon$$

Therefore the limit $\lim_{n \to \infty} x_n = x_*$ exists.

Theorem 6.14. Let $f : \mathbb{R}^2 \to M$ be defined in a neighbourhood at $(t_0, x_0) \in \mathbb{R}^2$ and satisfying the following Lipschitz condition:

 $\exists K > 0$ such that

$$|f(t,x) - f(t,y)| \le K|x - y|$$

for all x, y in the neighbourhood of (t_0, x_0) . We consider

$$\frac{dx}{dt} = f(t, x), \quad x(t_0) = x_0$$
 (6.2)

Under the above assumptions, the above differential equation 6.2 has a unique C^1 solution

 $x = \Phi(t)$

with $x_0 = \Phi(t_0)$ for $t \in (t_0 - \delta, t + \delta)$, i.e.

$$\phi'(t) = f(t, \phi(t))$$

Proof.

6.3.2 Fredholm Equations

Definition 6.15 (Fredholm equations). We say the integral equation of the form

$$f(x) = \lambda \int_{a}^{b} K(x, y) f(y) dy + \varphi(x)$$
(6.3)

Fredholm equation.

Theorem 6.16. Assume that K and φ are continuous, then we have |K(x,y)| < M on $[a,b] \times [a,b]$. If $\lambda M |b-a| < 1$, then the above Fredholm equation 6.3 has a unique solution.

Proof.

6.3.3 Volterra Integral Equations

Definition 6.17 (Volterra equations). We say the integral equation of the form

$$f(x) = \lambda \int_{a}^{x} K(x, y) f(y) dy + \varphi(x)$$
(6.4)

Volterra equation.

Theorem 6.18. Assume that K and φ are continuous, then the above Volterra equation 6.4 has a unique solution for any λ .

6.4 Series and Approximations

6.4.1 Bernstein Polynomials

Let $f \in \mathcal{C}([0,1],\mathbb{R})$.

Definition 6.19. We define the sequence of Bernstein polynomials

$$p_n(x) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}.$$

Theorem 6.20. For a given $\varepsilon > 0$, there exists a polynomial p(x) such that

$$\|p - f\| < \varepsilon.$$

Furthermore, the sequence of Bernstein polynomials

$$p_n(x) \to f$$
 uniformly.

6.4.2 Stone-Weierstrass Theorem

Let (M, d) be a metric space and $\mathcal{A} \subset \{f : A \to \mathbb{R}\}.$

Definition 6.21 (algebra). We say \mathcal{A} is an algebra if $\forall f, g \in \mathcal{A}$ and $\forall \alpha \in \mathbb{R}$, $f + g, fg, \alpha f \in \mathcal{A}$, that is, \mathcal{A} is closed under addition, multiplication, and scalar multiplication.

Definition 6.22 (separates points). We say \mathcal{A} separates points on A if $\forall x, y \in A$, if $x \neq y$, then $\exists f \in \mathcal{A}$ such that $f(x) \neq f(y)$.

Theorem 6.23 (Stone-Weierstrass). Let $A \subset M$ be compact and $\mathcal{B} \subset \mathcal{C}(A, \mathbb{R})$ satisfy the following:

- \mathcal{B} is an algebra.
- The nonzero constant function $1 \in \mathcal{B}$. ($\iff \forall x \in A, \exists f \in \mathcal{B}$ such that $f(x) \neq 0$)
- \mathcal{B} separates points on A.

Then, \mathcal{B} is dense in $\mathcal{C}(A, \mathbb{R})$, i.e., $\overline{\mathcal{B}} = \mathcal{C}(A, \mathbb{R})$.

Proof. We first introduce these lemmas before starting the proof.

Lemma 6.24. If $f \in \overline{\mathcal{B}}$, then $|f| \in \overline{\mathcal{B}}$.

Proof. Obvious.

Lemma 6.25. If $f, g \in \overline{\mathcal{B}}$, then $\max\{f, g\}, \min\{f, g\} \in \mathcal{B}$.

Proof. This is direct from our previous result.

For the preparation, $\forall x_1, x_2 \in A$, we define

$$f_{x_1,x_2}(x) = \frac{h(x_1) - h(x_2)}{g(x_1) - g(x_2)}g(x) + \frac{g(x_1)h(x_2) - h(x_1)g(x_2)}{g(x_1) - g(x_2)}$$

so that

$$f_{x_1,x_2}(x_1) = h(x_1), \quad f_{x_1,x_2}(x_2) = h(x_2).$$

From our construction, we observe that for a given x and $\forall y \in A \setminus \{x\}$, a function $f_{y,x}(z)$ satisfies

$$f_{y,x}(x) = h(x), \quad f_{y,x}(x) = h(y).$$

To finish the proof, it suffices to show that the following claim is true. *Claim.* For a given function $h \in \mathcal{C}(A, \mathbb{R})$, $\exists f \in \overline{\mathcal{B}}$ such that f = h. For a given $\varepsilon > 0$, there exists open neighbourhood U_y of y such that

$$z \in U_y \implies f_{y,x}(z) > h(z) - \varepsilon.$$

Note that $\{U_y \mid y \in A\}$ is an open cover of A and there exists its finite subcover

$$\{U_{y_1}, U_{y_2}, \cdots, U_{y_n}\}$$

which covers A.

Define

$$f_x(z) = \max\{f_{y_i,x} \mid 1 \le i \le n\}$$

, then

$$f_x \in \overline{\mathcal{B}}$$
 (by the lemma 6.25), $\forall z \in A, f_x(z) \ge h(z) - \varepsilon$ and $f_x(x) = h(x)$.

On the other hand, for a given $\varepsilon > 0$, there exists open neighbourhood V_x of x such that

$$z \in V_x \implies f_x(z) < h(z) + \varepsilon.$$

Note that $\{V_x \mid x \in A\}$ is an open cover of A and there exists its finite subcover

$$\{V_{x_1}, V_{x_2}, \cdots, V_{x_m}\}$$

which covers A.

Define

$$f_x(z) = \min\{f_{x_i} \mid 1 \le i \le m\}$$

, then

$$f \in \overline{\mathcal{B}}$$
 (by the lemma 6.25) and $\forall x \in A, |f(z) - h(z)| < \varepsilon$

which is enough to finish our proof.

6.4.3 Abel's Test

Theorem 6.26 (Abel's partial summation formula). Denote $s_n = \sum_{k=1}^n a_k$, then

$$\sum_{k=1}^{n} a_k b_k = s_n b_{n+1} - \sum_{k=1}^{n} s_k (b_{k+1} - b_k)$$
$$= s_n b_1 + \sum_{k=1}^{n} (s_n - s_k) (b_{k+1} - b_k)$$

Proof. The proof is so elementary that we left it as an exercise.

Theorem 6.27 (Abel's test). Let $A \in \mathbb{R}^d$ and $\varphi_n : A \to \mathbb{R}$ be a uniformly bounded and decreasing sequence of functions. If $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly, then so does $\sum_{n=1}^{\infty} \varphi_n(x) f_n(x)$.

Proof. Denote $M = \sup_{x \in A} |\varphi_n(x)|$, $s_n(x) = \sum_{k=1}^n f_k(x)$ and $r_n(x) = \sum_{k=1}^n \varphi_k(x) f_k(x)$. By the Abel's partial summation formula, we obtain for m < n

$$r_n(x) - r_m(x) = (s_n(x) - s_m(x)) \varphi_{m+1}(x) + \sum_{k=m+1}^n (s_n(x) - s_m(x)) (\varphi_{k+1}(x) - \varphi_k(x)).$$

For a given $\varepsilon > 0$, since $s_n(x)$ converges uniformly, there exists $n_0 \in \mathbb{N}$ such that

$$n, m \ge n_0 \implies \forall x \in A, |s_n(x) - s_m(x)| < \frac{\varepsilon}{3M}$$

Note that

$$\sum_{k=m+1}^{n} \left(s_n(x) - s_m(x) \right) \left(\varphi_{k+1}(x) - \varphi_k(x) \right)$$

$$= \sum_{k=m+1}^{n} \frac{\varepsilon}{3M} \left(\varphi_k(x) - \varphi_{k+1}(x) \right) + \sum_{k=m+1}^{n} \left(\frac{\varepsilon}{3M} + s_n(x) - s_m(x) \right) \left(\varphi_{k+1}(x) - \varphi_k(x) \right)$$

$$\leq \sum_{k=m+1}^{n} \frac{\varepsilon}{3M} \left(\varphi_k(x) - \varphi_{k+1}(x) \right)$$
(6.5)

6.4.4 Dirichlet's Test

Theorem 6.28. For sequences $f_n : A \subset \mathbb{R}^m \to \mathbb{R}$ and $g_n : A \subset \mathbb{R}^m \to \mathbb{R}$, if $\exists M > 0$,

$$\sup_{x \in A} \left| \sum_{k=1}^{n} f_k(x) \right| \le M \quad \forall n \in \mathbb{N}$$

and $g_n(x)$ is nonnegative and nonincreasing sequence of functions, i.e.,

$$g_{n+1}(x) \le g_n(x) \quad \text{and} \quad g_n \ge 0$$

such that

$$g_n \to 0$$
 uniformly

, then $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ converges uniformly on A.

Chapter 7 | Special Functions and Summability of Series

7.1 Power Series

7.2 Summability of Series

7.2.1 Cesaro Summability

Definition 7.1. Set $S_n = \sum_{k=1}^n a_k$ and $\sigma_n = \frac{1}{n} \sum_{k=1}^n S_k$. If $\lim_{n \to \infty} \sigma_n = A$, then we say that the series $\sum_{k=1}^{\infty} a_k$ is called Cesaro 1 -summable or (C, 1) summable to A, and denote $\sum_{k=1}^{\infty} a_k = A(C, 1)$

7.2.2 Abel Summability

and the inverse is not true in general.

Chapter 8 | The Lebesgue Theory

CHAPTER 8. THE LEBESGUE THEORY

Chapter 9 | Functions of Several Variables

Chapter 10 | Vector Analysis

Bibliography

- [Abbott, 2015] Abbott, S. (2015). Understanding Analysis. Undergraduate Texts in Mathematics. Springer New York.
- [Marsden and Hoffman, 1993] Marsden, J. and Hoffman, M. (1993). *Elementary Classical Analysis*. W. H. Freeman.
- [Rudin, 1976] Rudin, W. (1976). *Principles of Mathematical Analysis*. International series in pure and applied mathematics. McGraw-Hill.
- [Stoll, 2021] Stoll, M. (2021). Introduction to Real Analysis. Textbooks in Mathematics. CRC Press.