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Chapter 2 | Point-Set Topology

2.1 Open and Closed

2.1.1 Metric Space

Definition 2.1 (distance). Distance is a real-valued function d : X x X — Ry such that
*d>0,d(z,y) =0ifand only ifz =y
* d(z,y) = d(y, )
o d(z,y) <d(x,z)+d(y, 2)

Definition 2.2 (metric space). For a set X, if the distance function d is defined on X, we

call (X, d) a metric space. We also say that X is metric.

Definition 2.3 (an open ball centred at z and its radius 7).

Bm,r = {y € M’d(l’,y) < T}

2.1.2 Open and Closed Sets

Let (X, d) be a metric space.

Definition 2.4 (open set). We say that A C X is open if for every o € A, there exists
r > 0 such that B, , C A.

Definition 2.5 (closed set). We say that A C X is closed if A is open, i.e., for every
z € A®, there exists > 0 such that B,, C A°,

Definition 2.6 (interior point). We say that z € A is an interior point of A if there exists
an open set 1 such that z € V' C A. We denote A? a set of all interior points of A.
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Union and Intersections

Theorem 2.7. Consider the collection of open sets {U, |a € I}, where [ is an uncountable

index set.

. U U, is open.

aecl
n
. m U; 1s open.
i=1

Proof. » For every x € U U,, there exists 3 € I such that x € Ug. Since Uj is

. acl
open, there is > 0 such that

BmmCUQC UUQ

ael

, implying that U U, is open.

ael

* Forevery z € m U,z € U; forall 1 < i < n. Since Uj; is open for each 7, there

i=1
exists r; > 0 such that
B, CU,.

Take r = min{r; : 1 <1i < n}, then it follows that B, , C U; for every i, implying

$€Bx7rCﬁUi

i=1

n
, therefore ﬂ U, is open.

=1

O

Theorem 2.8. Consider the collection of closed sets {V, |« € I}, where I is an uncount-

able index set.

. ﬂ V, is closed.

ael

. U V; 1s closed.

i=1

Proof. Trivial by De Morgan’s Law. O
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2.1.3 Limit Points

Let (X, d) be a metric space.

Definition 2.9 (limit point). We say that x is an limit point of A whenever any open
neighbourhood of x has a point in A other than .

i.e., for every open neighbourhood V' of z,

vV (M\A{z}) # 0.
Definition 2.10. We denote A’ a set of all limit points of A.

Definition 2.11 (isolated point). We say that x is an isolated point of A if it is not a limit
point of A.

Definition 2.12 (closed set). We say that A C X is closed if A contains all of the limit
points of A, i.e.,
A'CA

Note that the definition above is equivalent to .3.

Proof. (1 = 2) Suppose that 2 ¢ A is an limit point of A, then z € A°. Note that M\ A
is open since A is closed by our hypothesis. Therefore 3r > 0s.t. B,, C A® which is
contrary to the fact that x is an limit point.

(2 <= 1) It is sufficient to show that A is open. Suppose that A is not open. Then
3z € A% s.t. any open neighbourhood containing = has an nonempty intersection with A,

implying that = ¢ A but x is an limit point of A. This contradicts our hypothesis. [
Theorem 2.13. X and () are both open and closed.

Proof. Tt is obvious that X is open = M% = () is closed.

(I = X is closed since it contains all of the limit points of itself. = ()} is open. O
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2.1.4 Open and Closed Relative

Let (X, d) be a metric space and A C X.

Definition 2.14 (open relative). We say U C A is open relative to A if there exists open
set V C X suchthat U =V N A.

Definition 2.15 (closed relative). We say U C A is closed relative to A if there exists
closed set F' C X suchthat U = F'N A.

2.1.5 Closure and Boundary

Definition 2.16 (closure). We define the closure of A denoted by A, in three ways:
» the intersection of all closed sets containing A : (A,)
* the smallest closed set containing A : (A;)
« AUA : (A3)

and these three definitions are equivalent.

Proof. A; = As: Obvious.
(A; D Aj) Note that for collection {C,} of all closed set containing A, each element
satisfies that C,, D A, C, D B. Hence A; = ﬂ C, D A;

(Ay C A3z) Claim: Vo € Ay, ifz ¢ A, then x g A

Suppose that 3z € Ay s.t. © ¢ Aand z ¢ B, that is, x is not an limit point of A. Then,
3 open neighbourhood V' s.t. 2 € Vand V N (A\{z}) =0 = VN A = () since
x ¢ A. Then it follows that A C V¢ and V¢ is closed. By the definition of A,, we derive

x € Ay C V¢, which contradicts our assumption. O
Definition 2.17 (boundary). We define the boundary of A as A = bd(4) = AN A
Theorem 2.18. = € A iff. Vr >0, B,, N A # () and B,, N A # ()

Proof. (<= )Vr>0,B,,NA#) — zcAand B,, NA° 4 — x € AC,
therefore = € AC = 9A.

( = ) Consider the case of = € A, then since 2 € AC, 2 must be an limit point of A€,
implying B, , N AY =+ (). Notice that it is trivial that B,,NA# (. WLOG, we can prove
the case of z € A. [
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2.1.6 Examples

Here are some useful properties related to what we have learnt:

Let (X, d) be a metric space.
Example 2.19. 1. (49)¢ = cl(AY)
2. (A)Y = int(AY)

3. 0A=A\int A
We observe that A%, A, and int(A“) are a partition of X . i.e., these three sets are disjoint
and A° U 0A Uint(AY) = X.

t(AC

Proof. 1. ((A9)¢ c AC)Vz € (intA)°,Vr >0, By, ¢ A = B,,NA° # 10
which implies
z € A% or v € (A9 therefore x € cl(A”).

((A)Y > cl(A9)) Vo € cl(AY), x € A% or z € (AY)'. It suffices to consider the
case of v € (A°). Then,Vr > 0, B,, N A° #0 = Ar > 0s.t. B,, C A,
hence = € (A°)°.
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Example 2.20. 1. 9A C A° < A: open
2. 0A C A < A: closed

3. DA =( <= A isboth open and closed.



2.1. OPEN AND CLOSED

Example 2.21. A is bounded if and only if IM > 0s.t. Va,y € A, d(x,y) < M.

Proof.

15
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Definition 2.22 (diameter). We define diameter of A as

sup {d(z,y) |z,y € A} (AF#0)
0 (A=10)

diam A =

2.2 Sequences and Series

2.2.1 Sequences

Let (X, d) be a metric space.

Definition 2.23 (convergence). For the sequence z,, € X, we say z,, convergestox € X,

or lim z, = x if for every open set V' containing x, there exists no € N such that
n—oo

n>ny = zr,c€V.

Note that z,, € X converges to x € X if and only if for every € > 0, there exists ng € N
such that
n>ny = d(z,,x) <e.

Theorem 2.24. A C X is closed if and only if for every sequence z,, € A that converges

in X, lim z, € A.
n—r0o0

Proof. (=) Suppose lim 2, =« ¢ A, thenz € A\ A = () (contradiction)

( <= ) It suffices to ShO\i’ tIC:lt A" C A. Suppose that z € A', that s, V open neighborhood
V ofz, V N A # (). For V open neighborhood V' of z, we can find n € Ns.t. x,, # x and
x, € Aimplying that x € A hence A is closed. O]

Theorem 2.25. Foraset A C X,z € Aiff. 3z, € A converges to z.

Proof. Ttsuffices to consider the case of 2 € A\ A. (=) Vo € A’, V open neighborhood
Voofx, VN A # (). Thus we can construct z,, € As.t. forn € N, z, € B, 1 N Aimplying
Ty — . ’

( <= ) V open neighborhood V of z, ny € Ns.t. ng > n implies 7, € V. Then
Vn{xz,|n>ne} #0 = V N A # () which results that = is an limit point of A. [
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Definition 2.26 (cluster point). We say x a cluster point of z,, if Ve > 0, there exists

infinitely many n such that d(x,,, x) < e.
Theorem 2.27. z is a cluster point of x,, iff. there is a subsequence of x,, which converges
to x.

Cauchy Sequences and Complete Metric Space

Let (X, d) be a metric space.

Definition 2.28 (Cauchy sequence). For a metric space X, we say ,, € X a Cauchy

sequence if Ve > 0, Ing € N s.t. m,n > ng implies d(z,, ) < €.

Definition 2.29. We say that a metric space X is complete if every Cauchy Sequence in

X converges to a point in X.

Example 2.30. Show that every Cauchy sequence in metric space is convergent. Give an
example of metric spaces X, A C X such that Cauchy sequence z,, € A converges in X
but not in A.
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2.2.2 Spaces

Let K be a vector space.

Normed Spaces

Definition 2.31 (normed spaces). A norm is a function ||| : K — Rj such that satisfies

the followings:

1. ||z]| > 0forVz € K

2. ||z|| =0iff. 2 =0

3. || Az]| = |z| ||z|| for Yz € K and scalar A
4 o+ yll < flzfl + llyll

We call (K, ||||) a normed space.
Theorem 2.32. A normed space is a metric space.

The proof is rather elementary so we left it as an exercise.

Inner Product Spaces

Definition 2.33 (inner product space). An inner product is a function (-,-) : K x K — R

such that satisfies the followings:
1. (z,z) > 0forVa € K
2. (z,2) =0iff. 2 =0
3. (Ax,y) = A(z,y) forVo,y € K and A € R.
4. (z,y+z) = (z,y) + (x,2) forVa,y,z € K
5. (z,y) = (y,z) forVa,y € K

We call (K, (-,-)) an inner product space.
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N

Cauchy-Schwarz Inequality 2.34. For an inner product space (K, (-, -)), [{z, )| < ((z, :1:))% ((y,y))=.

Proof. Assume that x,y # 0. For Va € R, we have
0 < (az +y oz +y) =a’ (z,2) + 2a (2, y) + (y,v)

Therefore we derive that ((z,))* — (z,z) (y,y) < 0. O
Theorem 2.35. An inner product space is a normed space.

We can derive the triangle inequality from Cauchy-Schwarz inequality so that a norm is

derived by inner product space.

2.2.3 Properties of Bounded and Cauchy Sequences

Definition 2.36 (bounded sequence). For anormed space, we say a sequence z,, is bounded
if 3X s.t. ||z,]| < X for Vn.

Theorem 2.37. Every convergent sequence in a metric space is a Cauchy sequence.

Proof. Suppose x,, beasequences.t. lim z,, = x. Fore > 0,3dn; > 0s.t. n > n; implies

n—oo

d(x,x,) < %. Take ng = nq, then VX, n > ng, d(zx, z,) < d(xx,z)+d(z,,z) <e O
Theorem 2.38. Every Cauchy sequence in a metric space is bounded.

Proof. Suppose z,, be a Cauchy sequence. Then, Ing s.t. n, m > ng implies d(z,, z,,) <
1. Note that d(z,,z,,) < 1 = d(z,,0) < d(z,,) + 1 for every n > ny. Take
M = max {||z||| 1 < k < ngp}+ 1, which follows that ||x,| < M for all n. N
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2.2.4 Series



2.3. COMPACTNESS 21

2.3 Compactness

2.3.1 Compact Sets

Let (X, d) be a metric space.

Definition 2.39 (sequentially compact). We say A C X is sequentially compact if every

sequence in A has a subsequence converges to a point in A.

Definition 2.40 (cover). Foraset A C X, we say a collection of sets {Ua},c; a cover of
Aif A C UyerU,.

Definition 2.41 (subcover). We say a subcollection of a cover of A a subcover of A.
Definition 2.42 (open cover). We call a cover an open cover if each element of it is open.

Definition 2.43 (compact). A C X is compact if every open cover of A has a finite

subcover.
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2.3.2 Lebesgue Number

Definition 2.44 (Lebesgue number). We say r > 0 a Lebesgue number of A if for an
open cover {Uy,}, ., of A, Vo € A, B, C Uy, for some k .

Theorem 2.45 (existence of Lebesgue number). If A is sequentially compact, then Lebesgue

number 7 exists.

Proof. Suppose not, then 3 seq z,, € As.t. B, 1 ¢ Uy for any k. By our hypothesis that
Ais seq’ly cpt, 3 subseq ,,, of 2, s.t. ,,, — x € A. Note that

e x € U forsome! = dr; >0s.t.x € B,,, CU,.

. . . 1 T
* since z,,, — x, ko s.t. k > ko implies z,,, € B, n and — < 51
K nk
Then we obtain

B 1 C ank’% C B, CU

Tngonyg

which contradicts our assumption. O



2.3. COMPACTNESS 23

2.3.3 Totally Bounded Sets

Definition 2.46 (totally bounded). We say a set A C X is totally bounded if Vr > 0,

there exists finite set {xy, xs, -+ ,2,} C K suchthat A C U By, .
i=1

Theorem 2.47. If A is sequentially compact, then A is totally bounded.
Proof. Suppose not. Let » > 0 be given. We can construct seq z,, € A by
* taking some x; € A and
* Vk € N, choosing xy.1 s.t. d(zyy1,x,,) > 7 forevery m < k

Such z,1 exists for every k because A is not totally bdd, which follows that it is unable
to cover A by finite numbers of open balls with radius . Suppose that subseq z,,, of z,,
converges, then Vry > 0, dng s.t. n > ngy implies z,, € B, ,,. Take r; = g then it

contradicts our supposition by our construction of x,,. Thus we conclude that
+ A convergent subseq z,, of z,,

, which contradicts our assumption. O
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2.3.4 Bolzano-Weierstrass Theorem

Theorem 2.48 (Bolzano-Weierstrass). A subset of metric space is compact if and only if

it is sequentially compact.

Proof. (=) Suppose not, then 3 seq z,, s.t. A convergent subseq z,,, . O
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Theorem 2.49. A metric space X is compact iff. it is complete and totally bounded.

Proof. (=) Since X is cpt, it is seq’ly cpt, which follows that X is totally bdd. Note that
every Cauchy seq x,, in X is convergent, which implies x,, — x € X by our hypothesis
that X is seq’ly cpt. Therefore X is complete.

( <) It suffices to show that X is seq’ly cpt. For every sequence z,, € X, WLOG, it is
enough to assume that x; # x; if i # j. We want to find some convergent subseq of z,,.
Since X is totally bounded, Vm € N, we can construct some finite set A,,, = {y1", y5", - - }
such that X C U B,

YEAm

am iy

. For each m, we can choose a,, s.t. dJooz,, € Bym 1 and

ﬂ By, 1 # (. Take z,,,, € B, , (FI€4) O

i=1
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2.3.5 Heine-Borel Theorem

Theorem 2.50 (Heine-Borel theorem). A C R" is compact iff. A is closed and bounded.
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2.3.6 Nested Set Property

Definition 2.51 (finite intersection property). In a metric space X, we say a collection
{V,} of closed sets in X has the finite intersection property if the intersection of the any

finite number of V,, with A is nonempty. i.e.,

(Vi #0
i=1
Theorem 2.52. A is compact iff. for all collection {V,,} of finite intersection property,
AN Va #0.
acl

Proof. (=) Suppose not, thatis, ANV, = (. Let U, := V., then A C U U,. Since A

ael

is compact, 3 finite subcover {U,, }—, of A, implying AN ﬂ V.., = 0 which violates the
i=1
finite intersection property.

(<) For an open cover {Uy,},; of A, let V,, := U, O
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2.4 Connectedness

2.4.1 Path-Connected Sets

Definition 2.53 (path-connected). We say that a set A is path-connected if Vz,y € A, 3
continuous function f : [0,1] — As.t. f(0) =z and f(1) =y.

2.4.2 Connected Sets

Definition 2.54 (disconnected). * We say a set A is disconnected if 3 two open sets

U, V satisfying these properties:

—UNA#PandVNA#£(D
- AcCcUUV
- UNANWVNA =0

or, equivalently,

* We say a set A is disconnected if 3 two disjoint open sets U, V' satisfying these

properties:

~-UNA#PandVNA#D
- AcCcUUV

in these case, we say U and V' separate A.

Definition 2.55 (connected). We say a set A is connected if it is not disconnected.
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Theorem 2.56. Path-connectedness implies connectedness, i.e., ifa set A is path-connected

then A is connected.

Proof.

Lemma 2.57. [0, 1] is connected.

Proof. Suppose not, then 3 open sets U, V' such that
1.UNA#PandVNAHAD
2. AcUuUV
3. (UNANVNA) =0

WLOG, it suffices to consider the case of 0 € U and 1 € V. Denote
c:=sup{zre[0,1]|xeUnA}

, then it follows that ¢ ¢ U and ¢ ¢ V' which leads to contradiction. O

Suppose not, then 3 open sets U, V' disconnects A. Choose z € UN A,y € VN A and
we could construct function f : [0, 1] — A such that f(0) =z and f(1) = y. O
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Chapter 3 | Continuous Mappings

3.1 Continuity

3.2 Uniform Continuity

31
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Chapter 4 | Differentiable Mappings

33
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Chapter 5 | Riemann-Stieltjes Integrals

5.1 Riemann Integration of Functions of One Variable

5.1.1 Partitions, Upper Sums and Lower Sums

Definition 5.1 (partitions). For a given interval [a, b], we say the finite set
P=Axog,x1, -, xpn}t, a=20<z1< - <Tp1<Tp,=0>=

a partition of [a, b].

Let f : [a,b] — R be a bounded function and P be a partition of [a, b].

Definition 5.2 (upper sums). We define a upper sum Up = U(f, P) as

Up = i < E[Sup f($)> (@it1 — x;)

i—0 \Z€[Ti,Tit1]

Definition 5.3 (lower sums). We define a lower sum Lp = L(f,P) as

Lr =Y ( sup f<x>> (@01 — )

i=0 we[xi,$¢+1]

Definition 5.4. For partitions P and P’ of [a, b], we say P’ is finer than P if
PCP

or, we say P’ a refinement of P.
Theorem 5.5. If P’ is a refinement of P, then
Lp < Lp <Up <Up

35
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Proof. Trivial. O



5.1. RIEMANN INTEGRATION OF FUNCTIONS OF ONE VARIABLE 37

5.1.2 Riemann Integrable

Let f : [a,b] — R be a bounded function.

Definition 5.6. We say

b
/ f = sup{Up | P is a partition of [a, b] }

an upper integral of f and
b
/ f = inf{Up | P is a partition of [a, b] }

a lower integral of [ over [a, b].

Definition 5.7. f is Riemann-integrable if
b b
=)

b
and we denote the common value of upper and lower integral by / f and Z the set of

Riemann-integrable function.

Theorem 5.8. Suppose that f, g € #Z on |a, b], then

b b
1. VkeR,kfe%’and/sz:k:/ 7l
b b b
2. f—i—gE%and/(f—i—g):/ f+/g.
b b
3. V:CE[a,b],iff(x)gg(x),then/ fg/g.

c b c
4. Assume that f € Z on [b, c|, then f € Z in [a, (] and/ f :/ f—i—/ f.
a a b

/abf‘s/ab|f|-

Proof. The proof is rather elementary so we skip the details. ]

5. Assume that |f| € Z, then
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Theorem 5.9. if f : [a,b] — R is bounded and continuous except for finitely many points
in [a, b], then f € Z on |a, b]

Theorem 5.10. if f : [a,b] — R is bounded and monotonous, then f € Z on |a, b|



5.2. FUNDAMENTAL THEOREM OF CALCULUS

5.2 Fundamental Theorem of Calculus

Theorem 5.11 (fundamental theorem of calculus).

39
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Chapter 6 | Sequences and Series of Functions

6.1 Uniform Convergence

6.1.1 Convergence of a Sequence of Functions

Let f, : A — N be a sequence of functions, where (/V, p) is a metric space.

Definition 6.1 (pointwise convergence). We say f,, converges pointwisely to f if for
each x € A, Ve > 0, In(z) € N such that n > n(z) implies p(f,,(x), f(x)) < €. And we
denote

fn— [ pointwisely.

Definition 6.2 (uniform convergence). We say f,, converges uniformly to f if Ve > 0,
Ing € N such that n > ng implies p(f,(z), f(x)) for every x € A. And we denote

fn— f uniformly.

Theorem 6.3. Suppose that f,, — f uniformly, then f is continuous.

Proof.
Claim. Vx,y € A, Ve > 0,30 > 0 such that d(x,y) < § implies p(f(z), f(y)) < e.

p(f(x), f(y) < p(f(x), fulx)) + p (ful@), f(¥) + p (f(y), fuly)) <€
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6.1.2 Cauchy Criterion

Theorem 6.4 (Cauchy criterion). f, : A — N converges uniformly if and only if
Ve > 0, dng such that

m,n >nyg = p(fu(x), fm(z)) <e Ve A

Proof. [

6.1.3 Weierstrass M Test

Theorem 6.5 (Weierstrass M test). Further assume that N is a complete normed space
and g, : A — N.

If [|gn(2)|| < M, Vx € A and Z M,, < oo, then Z gn converges uniformly.

n=0 n=0
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6.1.4 Properties of Uniform Convergence

Theorem 6.6. Suppose that f,, € Z([a,b]). If f, — f uniformly on [a,b], then f €

% (la,b]) and . :

lim [ fi(z)dz = (z)dz.
Proof. [

o0
Theorem 6.7. Suppose that Z gn () converges uniformly, then integration and summa-
n=1
tion can be interchanged, i.e.,

Theorem 6.8. Suppose that f,, € C*((a,b),R). If
fn — f pointwisely and f) — g uniformly

, then f is differentiable and f = g.

Proof. ]

Theorem 6.9. Suppose that g, € C'. If Z gn converges pointwisely and Z g, con-

n=1 n=1

(Z gn(l’)> = Z g;L(I)

verges uniformly, then

Proof. ]



44 CHAPTER 6. SEQUENCES AND SERIES OF FUNCTIONS

6.2 Spaces of Continuous Functions

Let (M, d) be a metric space and (NN, p, ||||) be a complete normed space.
WedenoteC = {f: AC M — N | fis continuous} and C, = {f eC|sup|f(z)] < oo}.
€A

Definition 6.10. We say the collection of functions IT = { f,, | « € I'} is equicontinuous
ifVe > 0,35 > 0, p(f(x), f(y)) < eifd(z,y) < 6 forevery f € IL.

6.2.1 Arzela-Ascoli Theorem

Theorem 6.11 (Arzela-Ascoli). Let A C M be compact, then B C Cj is compact if and

only if it is closed, pointwise compact, and equicontinuous.

Proof. ( <= ) By the Volzano-Weierstrass theorem, it suffices to show that 3 is sequen-

tially compact.

Claim. For every sequence of functions f,, € B, there exists convergent subsequence of
[

Since A is compact, it is totally bounded, thus V4 > 0, there is a finite set

Cs = {Ys1 Yss "+ » Ys, (6.1)

such that U By, s O A. Let

=1
c=Jc
=1

and since C is countable, we relabel it as C' = {x, x9, - - - }. For a sequence of functions

3=

fn € B, since B is pointwisely compact, we can construct a subsequence f; ; of f such
that f1 ;(z1) converges. Inductively, Vk € N we construct a subsequence fi11; of fi ;
such that fj 1 ;(z441) converges.

Define

gn = f n,n
, then we observe g,,(z;) converges Vi € N.
It is enough to finish our proof by showing that ¢ is uniformly convergent, 1.e.,

Claim. Foreach x € A,Ve > 0, Iny € Nsuch that m,n > ng implies p(g,, (), gm(z)) <

E.

Since g, is equicontinuous, we could choose § > 0 such that Vi, d(x,y) < § implies

p@@g@»<§
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Depending to our choice of &, we construct a finite set Cs as .1 For a given z, take
y € Cs such that d(x,y) < 4. Since g; is convergent pointwisely, take ny € N such that
n, m > ng implies

P(9n(Y); gm(y)) < %

Then, by the triangle inequality, we obtain

P(gn (), gm () < p(gn(2), 9n(Y)) + (G0 (Y), 9 (Y)) + P(gm(Y), gm(2)) < €.
(=) O

Theorem 6.12. Let N = R?. Assume that B C C (A,]Rd) is equicontinuous and point-

wise bounded. Then every sequence in B has a uniformly convergent subsequence.
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6.3 Contraction Mappings

6.3.1 Contraction Mapping Principle

Let (M, d) be a complete metric space.

Theorem 6.13 (contraction mapping principle). For the mapping ® : M — M, if there
exists a constant k& € [0, 1) such that

Va,y € M, d(®(x), P(y)) < kd(x,y)
, then there is a unique fixed point .. i.e.,
Az, € M suchthat P(x,) = z..
Further assume that o € M and Vn € N, ®(z,,_1) = x,,, then
lim z,, = z,.
n—o0

Proof. (Uniqueness) Suppose there exists v, is another fixed point of ®, then
d(®(z.), ©(y.)) = d(zs, ys) < kd(zay.) = (1= k)d(zs,9.) <0

therefore x, = v, (contradiction).

(Existence)

Claim. x, 1s Cauchy.

n

For a given € > 0, take ny = min {n d(xg, 1) < 5}, then

1-k
m—n—1 m—n—1 n
n+1i k
m>n>ng = d(x,,Ty,) < A(Tptiy Tngivt) < Z k" d(zg, 1) < 7 kd(:co,xl) <E.
i=0 i=0
Therefore the limit lim x,, = x, exists. ]

n—oo
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Theorem 6.14. Let f : R* — M be defined in a neighbourhood at (¢, 7,) € R? and
satisfying the following Lipschitz condition:
3K > 0 such that

[f(t,2) = f(t,y)] < K|z —y|

for all z, y in the neighbourhood of (¢, o).

We consider

dx

% = f(t7 ZL’), € (tO) = To (62)

Under the above assumptions, the above differential equation 6.2 has a unique C' solution
r = ®(t)
with zg = ® (ty) fort € (ty — §,t + 9), i.e.
¢'(t) = f(t, o(t))

Proof. ]
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6.3.2 Fredholm Equations

Definition 6.15 (Fredholm equations). We say the integral equation of the form

ﬂwzx/z«amﬂm@+wu> (6.3)

Fredholm equation.

Theorem 6.16. Assume that K and ¢ are continuous, then we have |K(x,y)| < M on
[a,b] x [a,b]. If A\M|b — a| < 1, then the above Fredholm equation 6.3 has a unique

solution.

Proof. ]

6.3.3 Volterra Integral Equations

Definition 6.17 (Volterra equations). We say the integral equation of the form

ﬂm:A/Uaawﬂw@+w@> (6.4)

Volterra equation.

Theorem 6.18. Assume that K and ¢ are continuous, then the above Volterra equation

6.4 has a unique solution for any \.
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6.4 Series and Approximations

6.4.1 Bernstein Polynomials
Let f € C([0,1],R).

Definition 6.19. We define the sequence of Bernstein polynomials

pn(z) = Zn: ! f (%) (1 — )"

k=0 \ Kk
Theorem 6.20. For a given € > 0, there exists a polynomial p(x) such that
Ip = fll <e.
Furthermore, the sequence of Bernstein polynomials

pn(z) — f uniformly.

49
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6.4.2 Stone-Weierstrass Theorem

Let (M, d) be a metric space and A C {f : A — R}.

Definition 6.21 (algebra). We say A is an algebra if Vf,g € A and Voo € R, f +
g, fg,af € A, that is, A is closed under addition, multiplication, and scalar multipli-

cation.

Definition 6.22 (separates points). We say A separates points on A if Va,y € A, ifz # v,
then 3f € A such that f(x) # f(y).

Theorem 6.23 (Stone-Weierstrass). Let A C M be compact and B C C(A, R) satisfy the

following:
» Bis an algebra.
» The nonzero constant function 1 € B. (<= Vx € A, 3f € B such that f(z) # 0)
* I3 separates points on A.
Then, B is dense in C(A, R), i.e., B = C(A,R).
Proof. We first introduce these lemmas before starting the proof.
Lemma 6.24. If f € B, then |f| € B.
Proof. Obvious. O
Lemma 6.25. If f, g € B, then max{f, g}, min{f, g} € B.
Proof. This is direct from our previous result. ]

For the preparation, Yz, x5 € A, we define

Joras(2) =

so that
fm,m(xl) = h(ml)’ fﬂchm(x?) = h($2)

From our construction, we observe that for a given x and Yy € A\ {z}, a function f, ()

satisfies

fya(x) = h(x),  fya(x) = h(y).
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To finish the proof, it suffices to show that the following claim is true.
Claim. For a given function h € C(A,R), 3f € B such that f = h.

For a given € > 0, there exists open neighbourhood U, of y such that
zeU, = fy(2)>h(z)—c.
Note that {U, | y € A} is an open cover of A and there exists its finite subcover

{UynUyz? o van}

which covers A.
Define
fo(2) =max{f, . |1<i<n}

, then
f. € B (bythe lemma.25), Vze€ A, fu(2) > h(z) —e and f.(z) = h(z).
On the other hand, for a given € > 0, there exists open neighbourhood V,, of x such that
z2€V, = fu(z) < h(z) +e.
Note that {V,, | x € A} is an open cover of A and there exists its finite subcover
(Vs Vo, Vi

which covers A.
Define

fo(2) = min{f, | 1 <i<m}

, then
f €B(bythelemmah.29) and Vo e A, |f(z)—h(2)| <e

which is enough to finish our proof. [
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6.4.3 Abel’s Test

Theorem 6.26 (Abel’s partial summation formula). Denote s, = Z a, then
k=1

n n

Z agby = Spbpi1 — Z Sk(bk+1 - bk)

k=1 k=1

= 5,01 + Z — 51) (bpg1 — )

Proof. The proof'is so elementary that we left it as an exercise. [
Theorem 6.27 (Abel’s test). Let A € R% and ¢, : A — R be a uniformly bounded

and decreasing sequence of functions. If Z fn(z) converges uniformly, then so does

n=1
S enl@) fule)
n=1
Proof. Denote M = sup |p, ()|, sn( ka ) and 7, (z) = i@k(iﬁ)fk(iﬁ) By

€A 1

the Abel’s partial summation formula, we obtaln form <n

n

ra(@)=rm(@) = (50(2) = 8(2)) P @)+ Y (5u(2) = 8 (2)) (Prs1(2) — or(2))-

k=m-+1

For a given € > 0, since s, (z) converges uniformly, there exists ny € N such that

n,m>ng = Vo € A, |s,(x) — sp(x)] < 3;4
Note that
D" (50(@) = 5(@)) (prna (@) = pu(a))
k=m+1
= Y @@ @)+ Y (57 +50l@) = snl@)) (Pen(@) - o))
<X = (el@) = P ()
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6.4.4 Dirichlet’s Test
Theorem 6.28. For sequences f,, : A C R™ - Randg, : A CR™ — R,if dM > 0,

sup E
T€EA k=1

fu(z)| <M V¥neN

and g, () is nonnegative and nonincreasing sequence of functions, i.e.,

gn+1(13) < gn<x) and g, >0

such that
gn — 0 uniformly

, then Z fn(2)gn(z) converges uniformly on A.
n=1
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Chapter 7 | Special Functions and Summabil-

ity of Series

7.1 Power Series
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7.2 Summability of Series

7.2.1 Cesaro Summability

n 1 n
Definition 7.1. Set S,, = E a, and o, = — E Sk. If lim o, = A, then we say that
n
k=1 k=1

n—oo

oo

the series Z ay, is called Cesaro 1 -summable or ( C,1 ) summable to A, and denote
k=1

> ap=A(C,1)
k=1
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7.2.2 Abel Summability
Z apr® = A, and we

Definition 7.2. Z ay, 18 1s summable in the sense of Abel if lim
k=1

r—1—
k=1

denote Z ar = A (Abel).
k=1

(Note that

summable = (C,1) summable = Abel summable

and the inverse is not true in general.
.
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Chapter 8 | The Lebesgue Theory
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Chapter 9 | Functions of Several Variables
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CHAPTER 9. FUNCTIONS OF SEVERAL VARIABLES



Chapter 10 | Vector Analysis
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