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Preface

우울해서, 너무숨이막혀서, 도피하고싶었기에만들었습니다.
내일의나는오늘의나보다는나았으면.
가슴이답답해서숨을쉴수가없다. 부디이집합들이나를치유하게해주소서.
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Chapter 2 | Point-Set Topology

2.1 Open and Closed

2.1.1 Metric Space

Definition 2.1 (distance). Distance is a real-valued function d : X ×X → R+
0 such that

• d ≥ 0, d(x, y) = 0 if and only if x = y

• d(x, y) = d(y, x)

• d(x, y) ≤ d(x, z) + d(y, z)

Definition 2.2 (metric space). For a setX , if the distance function d is defined onX , we
call (X, d) ametric space. We also say that X is metric.

Definition 2.3 (an open ball centred at x and its radius r).

Bx,r = {y ∈ M | d(x, y) < r}

2.1.2 Open and Closed Sets

Let (X, d) be a metric space.

Definition 2.4 (open set). We say that A ⊂ X is open if for every x ∈ A, there exists
r > 0 such that Bx,r ⊂ A.

Definition 2.5 (closed set). We say that A ⊂ X is closed if AC is open, i.e., for every
x ∈ AC , there exists r > 0 such that Bx,r ⊂ AC .

Definition 2.6 (interior point). We say that x ∈ A is an interior point of A if there exists
an open set V such that x ∈ V ⊂ A. We denote AO a set of all interior points of A.

9
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Union and Intersections

Theorem 2.7. Consider the collection of open sets {Uα|α ∈ I}, where I is an uncountable
index set.

•
⋃
α∈I

Uα is open.

•
n⋂

i=1

Ui is open.

Proof. • For every x ∈
⋃
α∈I

Uα, there exists β ∈ I such that x ∈ Uβ . Since Uβ is

open, there is r > 0 such that

Bx,r ⊂ Uβ ⊂
⋃
α∈I

Uα

, implying that
⋃
α∈I

Uα is open.

• For every x ∈
n⋂

i=1

Ui, x ∈ Ui for all 1 ≤ i ≤ n. Since Ui is open for each i, there

exists ri > 0 such that
Bx,ri ⊂ Ui.

Take r = min {ri : 1 ≤ i ≤ n}, then it follows that Bx,r ⊂ Ui for every i, implying

x ∈ Bx,r ⊂
n⋂

i=1

Ui

, therefore
n⋂

i=1

Ui is open.

Theorem 2.8. Consider the collection of closed sets {Vα|α ∈ I}, where I is an uncount-
able index set.

•
⋂
α∈I

Vα is closed.

•
n⋃

i=1

Vi is closed.

Proof. Trivial by De Morgan’s Law.
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2.1.3 Limit Points

Let (X, d) be a metric space.

Definition 2.9 (limit point). We say that x is an limit point of A whenever any open
neighbourhood of x has a point in A other than x.
i.e., for every open neighbourhood V of x,

V ∩ (M\ {x}) ̸= ∅.

Definition 2.10. We denote A′ a set of all limit points of A.

Definition 2.11 (isolated point). We say that x is an isolated point of A if it is not a limit
point of A.

Definition 2.12 (closed set). We say that A ⊂ X is closed if A contains all of the limit
points of A, i.e.,

A′ ⊂ A

.

Note that the definition above is equivalent to 2.5.

Proof. (1 =⇒ 2) Suppose that x /∈ A is an limit point ofA, then x ∈ AC . Note thatM\A
is open since A is closed by our hypothesis. Therefore ∃r > 0 s.t. Bx,r ⊂ AC which is
contrary to the fact that x is an limit point.
(2 ⇐= 1) It is sufficient to show that AC is open. Suppose that AC is not open. Then
∃x ∈ AC s.t. any open neighbourhood containing x has an nonempty intersection with A,
implying that x /∈ A but x is an limit point of A. This contradicts our hypothesis.

Theorem 2.13. X and ∅ are both open and closed.

Proof. It is obvious that X is open =⇒ MC = ∅ is closed.
∅C = X is closed since it contains all of the limit points of itself. =⇒ ∅ is open.
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2.1.4 Open and Closed Relative

Let (X, d) be a metric space and A ⊂ X .

Definition 2.14 (open relative). We say U ⊂ A is open relative to A if there exists open
set V ⊂ X such that U = V ∩ A.

Definition 2.15 (closed relative). We say U ⊂ A is closed relative to A if there exists
closed set F ⊂ X such that U = F ∩ A.

2.1.5 Closure and Boundary

Definition 2.16 (closure). We define the closure of A denoted by A, in three ways:

• the intersection of all closed sets containing A : (A1)

• the smallest closed set containing A : (A2)

• A ∪ A′ : (A3)

and these three definitions are equivalent.

Proof. A1 = A2: Obvious.
(A1 ⊃ A3) Note that for collection {Cα} of all closed set containing A, each element
satisfies that Cα ⊃ A, Cα ⊃ B. Hence A1 =

⋂
α

Cα ⊃ A3

(A2 ⊂ A3) Claim: ∀x ∈ A2, if x /∈ A, then x ∈ A′.
Suppose that ∃x ∈ A2 s.t. x /∈ A and x /∈ B, that is, x is not an limit point of A. Then,
∃ open neighbourhood V s.t. x ∈ V and V ∩ (A\ {x}) = ∅ =⇒ V ∩ A = ∅ since
x /∈ A. Then it follows that A ⊂ V C and V C is closed. By the definition of A2, we derive
x ∈ A2 ⊂ V c, which contradicts our assumption.

Definition 2.17 (boundary). We define the boundary of A as ∂A = bd(A) = A ∩ AC

Theorem 2.18. x ∈ ∂A iff. ∀r > 0, Bx,r ∩ A ̸= ∅ and Bx,r ∩ AC ̸= ∅

Proof. ( ⇐= ) ∀r > 0, Bx,r ∩ A ̸= ∅ =⇒ x ∈ A and Bx,r ∩ AC ̸= ∅ =⇒ x ∈ AC ,
therefore x ∈ AC = ∂A.
( =⇒ ) Consider the case of x ∈ A, then since x ∈ AC , x must be an limit point of AC ,
implying Bx,r ∩AC ̸= ∅. Notice that it is trivial that Bx,r ∩A ̸= ∅. WLOG, we can prove
the case of x ∈ AC .
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2.1.6 Examples

Here are some useful properties related to what we have learnt:
Let (X, d) be a metric space.

Example 2.19. 1. (AO)C = cl(AC)

2. (A)C = int(AC)

3. ∂A = A\ intA
We observe thatAO, ∂A, and int(AC) are a partition ofX . i.e., these three sets are disjoint
and AO ∪ ∂A ∪ int(AC) = X .

M

AO

∂A

int(AC)

Proof. 1. ((AO)C ⊂ AC) ∀x ∈ (intA)C, ∀r > 0, Bx,r ̸⊂ A =⇒ Bx,r ∩ AC ̸= ∅
which implies
x ∈ AC or x ∈ (AC)′ therefore x ∈ cl(AC).

((AO)C ⊃ cl(AC)) ∀x ∈ cl(AC), x ∈ AC or x ∈ (AC)′. It suffices to consider the
case of x ∈ (AC)′. Then, ∀r > 0, Bx,r ∩ AC ̸= ∅ =⇒ ̸ ∃r > 0 s.t. Bx,r ⊂ A,
hence x ∈ (AO)C .

2.
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Example 2.20. 1. ∂A ⊂ AC ⇐⇒ A: open

2. ∂A ⊂ A ⇐⇒ A: closed

3. ∂A = ∅ ⇐⇒ A is both open and closed.
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Example 2.21. A is bounded if and only if ∃M ≥ 0 s.t. ∀x, y ∈ A, d(x, y) ≤ M .

Proof.



16 CHAPTER 2. POINT-SET TOPOLOGY

Definition 2.22 (diameter). We define diameter of A as

diamA :=

sup {d(x, y) | x, y ∈ A} (A ̸= ∅)

0 (A = ∅)

2.2 Sequences and Series

2.2.1 Sequences

Let (X, d) be a metric space.

Definition 2.23 (convergence). For the sequence xn ∈ X , we say xn converges to x ∈ X ,
or lim

n→∞
xn = x if for every open set V containing x, there exists n0 ∈ N such that

n ≥ n0 =⇒ xn ∈ V.

Note that xn ∈ X converges to x ∈ X if and only if for every ε > 0, there exists n0 ∈ N
such that

n ≥ n0 =⇒ d(xn, x) < ε.

Theorem 2.24. A ⊂ X is closed if and only if for every sequence xn ∈ A that converges
in X , lim

n→∞
xn ∈ A.

Proof. ( =⇒ ) Suppose lim
x→∞

xn = x /∈ A, then x ∈ A′\A = ∅ (contradiction)
(⇐= ) It suffices to show thatA′ ⊂ A. Suppose that x ∈ A′, that is, ∀ open neighborhood
V of x, V ∩A ̸= ∅. For ∀ open neighborhood V of x, we can find n ∈ N s.t. xn ̸= x and
xn ∈ A implying that x ∈ A hence A is closed.

Theorem 2.25. For a set A ⊂ X , x ∈ A iff. ∃ xn ∈ A converges to x.

Proof. It suffices to consider the case of x ∈ A\A. ( =⇒ ) ∀x ∈ A′, ∀ open neighborhood
V of x, V ∩A ̸= ∅. Thus we can construct xn ∈ A s.t. for n ∈ N, xn ∈ Bx, 1

n
∩A implying

xn → x.
( ⇐= ) ∀ open neighborhood V of x, n0 ∈ N s.t. n0 ≥ n implies xn ∈ V . Then
V ∩ {xn |n ≥ n0} ̸= ∅ =⇒ V ∩ A ̸= ∅ which results that x is an limit point of A.
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Definition 2.26 (cluster point). We say x a cluster point of xn if ∀ε > 0, there exists
infinitely many n such that d(xn, x) < ε.

Theorem 2.27. x is a cluster point of xn iff. there is a subsequence of xn which converges
to x.

Cauchy Sequences and Complete Metric Space

Let (X, d) be a metric space.

Definition 2.28 (Cauchy sequence). For a metric space X , we say xn ∈ X a Cauchy
sequence if ∀ε > 0, ∃n0 ∈ N s.t. m,n ≥ n0 implies d(xm, xn) < ε.

Definition 2.29. We say that a metric space X is complete if every Cauchy Sequence in
X converges to a point in X .

Example 2.30. Show that every Cauchy sequence in metric space is convergent. Give an
example of metric spaces X , A ⊂ X such that Cauchy sequence xn ∈ A converges in X
but not in A.
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2.2.2 Spaces

LetK be a vector space.

Normed Spaces

Definition 2.31 (normed spaces). A norm is a function ∥∥ : K → R+
0 such that satisfies

the followings:

1. ∥x∥ ≥ 0 for ∀x ∈ K

2. ∥x∥ = 0 iff. x = 0

3. ∥λx∥ = |x| ∥x∥ for ∀x ∈ K and scalar λ

4. ∥x+ y∥ ≤ ∥x∥+ ∥y∥

We call (K, ∥∥) a normed space.

Theorem 2.32. A normed space is a metric space.

The proof is rather elementary so we left it as an exercise.

Inner Product Spaces

Definition 2.33 (inner product space). An inner product is a function ⟨·, ·⟩ : K×K → R
such that satisfies the followings:

1. ⟨x, x⟩ ≥ 0 for ∀x ∈ K

2. ⟨x, x⟩ = 0 iff. x = 0

3. ⟨λx, y⟩ = λ ⟨x, y⟩ for ∀x, y ∈ K and λ ∈ R.

4. ⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩ for ∀x, y, z ∈ K

5. ⟨x, y⟩ = ⟨y, x⟩ for ∀x, y ∈ K

We call (K, ⟨·, ·⟩) an inner product space.
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Cauchy-Schwarz Inequality 2.34. For an inner product space (K, ⟨·, ·⟩), |⟨x, y⟩| ≤ (⟨x, x⟩)
1
2 (⟨y, y⟩)

1
2 .

Proof. Assume that x, y ̸= 0. For ∀α ∈ R, we have

0 ≤ ⟨αx+ y, αx+ y⟩ = α2 ⟨x, x⟩+ 2α ⟨x, y⟩+ ⟨y, y⟩

Therefore we derive that (⟨x, y⟩)2 − ⟨x, x⟩ ⟨y, y⟩ ≤ 0.

Theorem 2.35. An inner product space is a normed space.

We can derive the triangle inequality from Cauchy-Schwarz inequality so that a norm is
derived by inner product space.

2.2.3 Properties of Bounded and Cauchy Sequences

Definition 2.36 (bounded sequence). For a normed space, we say a sequencexn isbounded
if ∃X s.t. ∥xn∥ ≤ X for ∀n.

Theorem 2.37. Every convergent sequence in a metric space is a Cauchy sequence.

Proof. Suppose xn be a sequence s.t. lim
n→∞

xn = x. For ε > 0, ∃n1 > 0 s.t. n ≥ n1 implies

d(x, xn) <
ε

2
. Take n0 = n1, then ∀X,n > n0, d(xX , xn) ≤ d(xX , x)+d(xn, x) < ϵ.

Theorem 2.38. Every Cauchy sequence in a metric space is bounded.

Proof. Suppose xn be a Cauchy sequence. Then, ∃n0 s.t. n,m ≥ n0 implies d(xn, xm) <

1. Note that d(xn, xn0) < 1 =⇒ d(xn, 0) < d(xn0) + 1 for every n ≥ n0. Take
M = max {∥xk∥ | 1 ≤ k ≤ n0}+ 1, which follows that ∥xn∥ ≤ M for all n.
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2.2.4 Series
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2.3 Compactness

2.3.1 Compact Sets

Let (X, d) be a metric space.

Definition 2.39 (sequentially compact). We sayA ⊂ X is sequentially compact if every
sequence in A has a subsequence converges to a point in A.

Definition 2.40 (cover). For a set A ⊂ X , we say a collection of sets {Uα}α∈I a cover of
A if A ⊂ ∪α∈IUα.

Definition 2.41 (subcover). We say a subcollection of a cover of A a subcover of A.

Definition 2.42 (open cover). We call a cover an open cover if each element of it is open.

Definition 2.43 (compact). A ⊂ X is compact if every open cover of A has a finite
subcover.
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2.3.2 Lebesgue Number

Definition 2.44 (Lebesgue number). We say r > 0 a Lebesgue number of A if for an
open cover {Uα}α∈I of A, ∀x ∈ A, Bx,r ⊂ Uk for some k .

Theorem2.45 (existence of Lebesgue number). IfA is sequentially compact, then Lebesgue
number r exists.

Proof. Suppose not, then ∃ seq xn ∈ A s.t. Bxn,
1
n
/∈ Uk for any k. By our hypothesis that

A is seq’ly cpt, ∃ subseq xnk
of xn s.t. xnk

→ x ∈ A. Note that

• x ∈ Ul for some l =⇒ ∃r1 > 0 s.t. x ∈ Bx,r1 ⊂ Ul.

• since xnk
→ x, ∃k0 s.t. k ≥ k0 implies xnk

∈ Bx,
r1
2
and

1

nk

<
r1
2
.

Then we obtain
Bxnk

, 1
nk

⊂ Bxnk
,
r1
2
⊂ Bx,r1 ⊂ Ul

which contradicts our assumption.



2.3. COMPACTNESS 23

2.3.3 Totally Bounded Sets

Definition 2.46 (totally bounded). We say a set A ⊂ X is totally bounded if ∀r > 0,

there exists finite set {x1, x2, · · · , xn} ⊂ K such that A ⊂
n⋃

i=1

Bxi,r.

Theorem 2.47. If A is sequentially compact, then A is totally bounded.

Proof. Suppose not. Let r > 0 be given. We can construct seq xn ∈ A by

• taking some x1 ∈ A and

• ∀k ∈ N, choosing xk+1 s.t. d(xk+1, xm) > r for everym ≤ k

Such xk+1 exists for every k because A is not totally bdd, which follows that it is unable
to cover A by finite numbers of open balls with radius r. Suppose that subseq xnk

of xn

converges, then ∀r1 > 0, ∃n0 s.t. n ≥ n0 implies xn ∈ Bx,r1 . Take r1 =
r

2
then it

contradicts our supposition by our construction of xn. Thus we conclude that

• ̸ ∃ convergent subseq xnk
of xn

, which contradicts our assumption.
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2.3.4 Bolzano-Weierstrass Theorem

Theorem 2.48 (Bolzano-Weierstrass). A subset of metric space is compact if and only if
it is sequentially compact.

Proof. ( =⇒ ) Suppose not, then ∃ seq xn s.t. ̸ ∃ convergent subseq xnk
.
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Theorem 2.49. A metric space X is compact iff. it is complete and totally bounded.

Proof. ( =⇒ ) SinceX is cpt, it is seq’ly cpt, which follows thatX is totally bdd. Note that
every Cauchy seq xn in X is convergent, which implies xn → x ∈ X by our hypothesis
that X is seq’ly cpt. Therefore X is complete.
(⇐= ) It suffices to show that X is seq’ly cpt. For every sequence xn ∈ X , WLOG, it is
enough to assume that xi ̸= xj if i ̸= j. We want to find some convergent subseq of xn.
SinceX is totally bounded, ∀m ∈ N, we can construct some finite setAm = {ym1 , ym2 , · · · }
such that X ⊂

⋃
y∈Am

By, 1
m
. For each m, we can choose am s.t. ∃∞xn ∈ Bym,am , 1

m
and

m⋂
i=1

Byi,ai ,
1
i
̸= ∅. Take xnm ∈ Bym,k

(미완성)



26 CHAPTER 2. POINT-SET TOPOLOGY

2.3.5 Heine-Borel Theorem

Theorem 2.50 (Heine-Borel theorem). A ⊂ Rn is compact iff. A is closed and bounded.
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2.3.6 Nested Set Property

Definition 2.51 (finite intersection property). In a metric space X , we say a collection
{Vα} of closed sets inX has the finite intersection property if the intersection of the any
finite number of Vα with A is nonempty. i.e.,

n⋂
i=1

Vi ̸= ∅

Theorem 2.52. A is compact iff. for all collection {Vα} of finite intersection property,
A ∩

⋂
α∈I

Vα ̸= ∅.

Proof. (⇒) Suppose not, that is, A ∩ Vα = ∅. Let Uα := V C
α , then A ⊂

⋃
α∈I

Uα. Since A

is compact, ∃ finite subcover {Uαi
}ni=1 of A, implying A ∩

n⋂
i=1

Vαi
= ∅ which violates the

finite intersection property.
(⇐) For an open cover {Uα}α∈I of A, let Vα := Uα
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2.4 Connectedness

2.4.1 Path-Connected Sets

Definition 2.53 (path-connected). We say that a set A is path-connected if ∀x, y ∈ A, ∃
continuous function f : [0, 1] → A s.t. f(0) = x and f(1) = y.

2.4.2 Connected Sets

Definition 2.54 (disconnected). • We say a set A is disconnected if ∃ two open sets
U , V satisfying these properties:

– U ∩ A ̸= ∅ and V ∩ A ̸= ∅

– A ⊂ U ∪ V

– (U ∩ A) ∩ (V ∩ A) = ∅

or, equivalently,

• We say a set A is disconnected if ∃ two disjoint open sets U , V satisfying these
properties:

– U ∩ A ̸= ∅ and V ∩ A ̸= ∅

– A ⊂ U ∪ V

in these case, we say U and V separate A.

Definition 2.55 (connected). We say a set A is connected if it is not disconnected.
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Theorem2.56. Path-connectedness implies connectedness, i.e., if a setA is path-connected
then A is connected.

Proof.

Lemma 2.57. [0, 1] is connected.

Proof. Suppose not, then ∃ open sets U , V such that

1. U ∩ A ̸= ∅ and V ∩ A ̸= ∅

2. A ⊂ U ∪ V

3. (U ∩ A) ∩ (V ∩ A) = ∅

WLOG, it suffices to consider the case of 0 ∈ U and 1 ∈ V . Denote

c := sup {x ∈ [0, 1] | x ∈ U ∩ A}

, then it follows that c /∈ U and c /∈ V which leads to contradiction.

Suppose not, then ∃ open sets U , V disconnects A. Choose x ∈ U ∩ A, y ∈ V ∩ A and
we could construct function f : [0, 1] → A such that f(0) = x and f(1) = y.
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Chapter 3 | Continuous Mappings

3.1 Continuity

3.2 Uniform Continuity
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Chapter 4 | Differentiable Mappings
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Chapter 5 | Riemann-Stieltjes Integrals

5.1 Riemann Integration of Functions of One Variable

5.1.1 Partitions, Upper Sums and Lower Sums

Definition 5.1 (partitions). For a given interval [a, b], we say the finite set

P = {x0, x1, · · · , xn} , a = x0 < x1 < · · · < xn−1 < xn = b

a partition of [a, b].

Let f : [a, b] → R be a bounded function and P be a partition of [a, b].

Definition 5.2 (upper sums). We define a upper sum UP = U(f,P) as

UP =
n−1∑
i=0

(
sup

x∈[xi,xi+1]

f(x)

)
(xi+1 − xi)

Definition 5.3 (lower sums). We define a lower sum LP = L(f,P) as

LP =
n−1∑
i=0

(
sup

x∈[xi,xi+1]

f(x)

)
(xi+1 − xi)

Definition 5.4. For partitions P and P ′ of [a, b], we say P ′ is finer than P if

P ⊂ P ′

or, we say P ′ a refinement of P .

Theorem 5.5. If P ′ is a refinement of P , then

LP ≤ L′
P ≤ U ′

P ≤ UP

35
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Proof. Trivial.
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5.1.2 Riemann Integrable

Let f : [a, b] → R be a bounded function.

Definition 5.6. We say

∫ b

a

f = sup {UP | P is a partition of [a, b]}

an upper integral of f and∫ b

a

f = inf {UP | P is a partition of [a, b]}

a lower integral of f over [a, b].

Definition 5.7. f is Riemann-integrable if

∫ b

a

f =

∫ b

a

f

and we denote the common value of upper and lower integral by
∫ b

a

f and R the set of

Riemann-integrable function.

Theorem 5.8. Suppose that f, g ∈ R on [a, b], then

1. ∀k ∈ R, kf ∈ R and
∫ b

a

kf = k

∫ b

a

f .

2. f + g ∈ R and
∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

3. ∀x ∈ [a, b], if f(x) ≤ g(x), then
∫ b

a

f ≤
∫ b

a

g.

4. Assume that f ∈ R on [b, c], then f ∈ R in [a, c] and
∫ c

a

f =

∫ b

a

f +

∫ c

b

f .

5. Assume that |f | ∈ R, then
∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.

Proof. The proof is rather elementary so we skip the details.
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Theorem 5.9. if f : [a, b] → R is bounded and continuous except for finitely many points
in [a, b], then f ∈ R on [a, b]

Theorem 5.10. if f : [a, b] → R is bounded and monotonous, then f ∈ R on [a, b]
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5.2 Fundamental Theorem of Calculus

Theorem 5.11 (fundamental theorem of calculus).
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Chapter 6 | Sequences and Series of Functions

6.1 Uniform Convergence

6.1.1 Convergence of a Sequence of Functions

Let fn : A → N be a sequence of functions, where (N, ρ) is a metric space.

Definition 6.1 (pointwise convergence). We say fn converges pointwisely to f if for
each x ∈ A, ∀ε > 0, ∃n(x) ∈ N such that n ≥ n(x) implies ρ(fn(x), f(x)) < ε. And we
denote

fn → f pointwisely.

Definition 6.2 (uniform convergence). We say fn converges uniformly to f if ∀ε > 0,
∃n0 ∈ N such that n ≥ n0 implies ρ(fn(x), f(x)) for every x ∈ A. And we denote

fn → f uniformly.

Theorem 6.3. Suppose that fn → f uniformly, then f is continuous.

Proof.

Claim. ∀x, y ∈ A, ∀ε > 0, ∃δ > 0 such that d(x, y) < δ implies ρ(f(x), f(y)) < ε.

ρ(f(x), f(y)) ≤ ρ (f(x), fn(x)) + ρ (fn(x), fn(y)) + ρ (f(y), fn(y)) < ϵ
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6.1.2 Cauchy Criterion

Theorem 6.4 (Cauchy criterion). fn : A → N converges uniformly if and only if
∀ε > 0, ∃n0 such that

m,n ≥ n0 =⇒ ρ(fn(x), fm(x)) < ε ∀x ∈ A.

Proof.

6.1.3 Weierstrass M Test

Theorem 6.5 (Weierstrass M test). Further assume that N is a complete normed space
and gn : A → N .

If ∥gn(x)∥ < Mn ∀x ∈ A and
∞∑
n=0

Mn < ∞, then
∞∑
n=0

gn converges uniformly.
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6.1.4 Properties of Uniform Convergence

Theorem 6.6. Suppose that fn ∈ R([a, b]). If fn → f uniformly on [a, b], then f ∈
R([a, b]) and

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx.

Proof.

Theorem 6.7. Suppose that
∞∑
n=1

gn(x) converges uniformly, then integration and summa-

tion can be interchanged, i.e., ∫ b

a

∞∑
n=1

gn(x)dx =
∞∑
n=1

Theorem 6.8. Suppose that fn ∈ C1((a, b),R). If

fn → f pointwisely and f ′
n → g uniformly

, then f is differentiable and f = g.

Proof.

Theorem 6.9. Suppose that gn ∈ C1. If
∞∑
n=1

gn converges pointwisely and
∞∑
n=1

g′n con-

verges uniformly, then (
∞∑
n=1

gn(x)

)′

=
∞∑
n=1

g′n(x).

Proof.
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6.2 Spaces of Continuous Functions

Let (M,d) be a metric space and (N, ρ, ∥∥) be a complete normed space.

We denote C = {f : A ⊂ M → N | f is continuous} and Cb =
{
f ∈ C

∣∣∣∣ sup
x∈A

|f(x)| < ∞
}
.

Definition 6.10. We say the collection of functions Π = {fα | α ∈ I} is equicontinuous
if ∀ε > 0, ∃δ > 0, ρ(f(x), f(y)) < ε if d(x, y) < δ for every f ∈ Π.

6.2.1 Arzela-Ascoli Theorem

Theorem 6.11 (Arzela-Ascoli). Let A ⊂ M be compact, then B ⊂ Cb is compact if and
only if it is closed, pointwise compact, and equicontinuous.

Proof. (⇐= ) By the Volzano-Weierstrass theorem, it suffices to show that B is sequen-
tially compact.

Claim. For every sequence of functions fn ∈ B, there exists convergent subsequence of
fn.

Since A is compact, it is totally bounded, thus ∀δ > 0, there is a finite set

Cδ = {yδ1 , yδ2 , · · · , yδn} (6.1)

such that
n⋃

i=1

Byδi ,δ
⊃ A. Let

C =
n⋃

i=1

C 1
n

and since C is countable, we relabel it as C = {x1, x2, · · · }. For a sequence of functions
fn ∈ B, since B is pointwisely compact, we can construct a subsequence f1,j of f such
that f1,j(x1) converges. Inductively, ∀k ∈ N we construct a subsequence fk+1,j of fk,j
such that fk+1,j(xk+1) converges.
Define

gn = fn,n

, then we observe gn(xi) converges ∀i ∈ N.
It is enough to finish our proof by showing that g is uniformly convergent, i.e.,

Claim. For each x ∈ A, ∀ε > 0, ∃n0 ∈ N such thatm,n ≥ n0 implies ρ(gn(x), gm(x)) <
ε.

Since gn is equicontinuous, we could choose δ > 0 such that ∀i, d(x, y) < δ implies

ρ(gi(x), gi(y)) <
ε

3
.
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Depending to our choice of δ, we construct a finite set Cδ as 6.1. For a given x, take
y ∈ Cδ such that d(x, y) < δ. Since gi is convergent pointwisely, take n0 ∈ N such that
n,m ≥ n0 implies

ρ(gn(y), gm(y)) <
ε

3
.

Then, by the triangle inequality, we obtain

ρ(gn(x), gm(x)) ≤ ρ(gn(x), gn(y)) + ρ(gn(y), gm(y)) + ρ(gm(y), gm(x)) < ε.

( =⇒ )

Theorem 6.12. Let N = Rd. Assume that B ⊂ C
(
A,Rd

)
is equicontinuous and point-

wise bounded. Then every sequence in B has a uniformly convergent subsequence.
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6.3 Contraction Mappings

6.3.1 Contraction Mapping Principle

Let (M,d) be a complete metric space.

Theorem 6.13 (contraction mapping principle). For the mapping Φ : M → M , if there
exists a constant k ∈ [0, 1) such that

∀x, y ∈ M, d(Φ(x),Φ(y)) ≤ kd(x, y)

, then there is a unique fixed point x∗. i.e.,

∃!x∗ ∈ M such that Φ(x∗) = x∗.

Further assume that x0 ∈ M and ∀n ∈ N, Φ(xn−1) = xn, then

lim
n→∞

xn = x∗.

Proof. (Uniqueness) Suppose there exists y∗ is another fixed point of Φ, then

d(Φ(x∗),Φ(y∗)) = d(x∗, y∗) ≤ kd(x∗y∗) =⇒ (1− k)d(x∗, y∗) ≤ 0

therefore x∗ = y∗ (contradiction).
(Existence)
Claim. xn is Cauchy.

For a given ε > 0, take n0 = min
{
n

∣∣∣∣ kn

1− k
d(x0, x1) < ε

}
, then

m > n ≥ n0 =⇒ d(xn, xm) ≤
m−n−1∑

i=0

d(xn+i, xn+i+1) ≤
m−n−1∑

i=0

kn+id(x0, x1) ≤
kn

1− k
d(x0, x1) < ε.

Therefore the limit lim
n→∞

xn = x∗ exists.
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Theorem 6.14. Let f : R2 → M be defined in a neighbourhood at (t0, x0) ∈ R2 and
satisfying the following Lipschitz condition:
∃K > 0 such that

|f(t, x)− f(t, y)| ≤ K|x− y|

for all x, y in the neighbourhood of (t0, x0).
We consider

dx

dt
= f(t, x), x (t0) = x0 (6.2)

Under the above assumptions, the above differential equation 6.2 has a unique C1 solution

x = Φ(t)

with x0 = Φ(t0) for t ∈ (t0 − δ, t+ δ), i.e.

ϕ′(t) = f(t, ϕ(t))

Proof.
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6.3.2 Fredholm Equations

Definition 6.15 (Fredholm equations). We say the integral equation of the form

f(x) = λ

∫ b

a

K(x, y)f(y)dy + φ(x) (6.3)

Fredholm equation.

Theorem 6.16. Assume that K and φ are continuous, then we have |K(x, y)| < M on
[a, b] × [a, b]. If λM |b − a| < 1, then the above Fredholm equation 6.3 has a unique
solution.

Proof.

6.3.3 Volterra Integral Equations

Definition 6.17 (Volterra equations). We say the integral equation of the form

f(x) = λ

∫ x

a

K(x, y)f(y)dy + φ(x) (6.4)

Volterra equation.

Theorem 6.18. Assume that K and φ are continuous, then the above Volterra equation
6.4 has a unique solution for any λ.
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6.4 Series and Approximations

6.4.1 Bernstein Polynomials

Let f ∈ C([0, 1],R).

Definition 6.19. We define the sequence of Bernstein polynomials

pn(x) =
n∑

k=0

n

k

 f

(
k

n

)
xk(1− x)n−k.

Theorem 6.20. For a given ε > 0, there exists a polynomial p(x) such that

∥p− f∥ < ε.

Furthermore, the sequence of Bernstein polynomials

pn(x) → f uniformly.
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6.4.2 Stone-Weierstrass Theorem

Let (M,d) be a metric space and A ⊂ {f : A → R}.

Definition 6.21 (algebra). We say A is an algebra if ∀f, g ∈ A and ∀α ∈ R, f +

g, fg, αf ∈ A, that is, A is closed under addition, multiplication, and scalar multipli-
cation.

Definition 6.22 (separates points). We sayA separates points onA if ∀x, y ∈ A, if x ̸= y,
then ∃f ∈ A such that f(x) ̸= f(y).

Theorem 6.23 (Stone-Weierstrass). Let A ⊂ M be compact and B ⊂ C(A,R) satisfy the
following:

• B is an algebra.

• The nonzero constant function 1 ∈ B. (⇐⇒ ∀x ∈ A, ∃f ∈ B such that f(x) ̸= 0)

• B separates points on A.

Then, B is dense in C(A,R), i.e., B = C(A,R).

Proof. We first introduce these lemmas before starting the proof.

Lemma 6.24. If f ∈ B, then |f | ∈ B.

Proof. Obvious.

Lemma 6.25. If f, g ∈ B, then max{f, g},min{f, g} ∈ B.

Proof. This is direct from our previous result.

For the preparation, ∀x1, x2 ∈ A, we define

fx1,x2(x) =
h(x1)− h(x2)

g(x1)− g(x2)
g(x) +

g(x1)h(x2)− h(x1)g(x2)

g(x1)− g(x2)

so that
fx1,x2(x1) = h(x1), fx1,x2(x2) = h(x2).

From our construction, we observe that for a given x and ∀y ∈ A\{x}, a function fy,x(z)
satisfies

fy,x(x) = h(x), fy,x(x) = h(y).
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To finish the proof, it suffices to show that the following claim is true.

Claim. For a given function h ∈ C(A,R), ∃f ∈ B such that f = h.

For a given ε > 0, there exists open neighbourhood Uy of y such that

z ∈ Uy =⇒ fy,x(z) > h(z)− ε.

Note that {Uy | y ∈ A} is an open cover of A and there exists its finite subcover

{Uy1 , Uy2 , · · · , Uyn}

which covers A.
Define

fx(z) = max{fyi,x | 1 ≤ i ≤ n}

, then

fx ∈ B (by the lemma 6.25), ∀z ∈ A, fx(z) ≥ h(z)− ε and fx(x) = h(x).

On the other hand, for a given ε > 0, there exists open neighbourhood Vx of x such that

z ∈ Vx =⇒ fx(z) < h(z) + ε.

Note that {Vx | x ∈ A} is an open cover of A and there exists its finite subcover

{Vx1 , Vx2 , · · · , Vxm}

which covers A.
Define

fx(z) = min{fxi
| 1 ≤ i ≤ m}

, then
f ∈ B (by the lemma 6.25) and ∀x ∈ A, |f(z)− h(z)| < ε

which is enough to finish our proof.
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6.4.3 Abel’s Test

Theorem 6.26 (Abel’s partial summation formula). Denote sn =
n∑

k=1

ak, then

n∑
k=1

akbk = snbn+1 −
n∑

k=1

sk(bk+1 − bk)

= snb1 +
n∑

k=1

(sn − sk)(bk+1 − bk)

Proof. The proof is so elementary that we left it as an exercise.

Theorem 6.27 (Abel’s test). Let A ∈ Rd and φn : A → R be a uniformly bounded

and decreasing sequence of functions. If
∞∑
n=1

fn(x) converges uniformly, then so does

∞∑
n=1

φn(x)fn(x).

Proof. Denote M = sup
x∈A

|φn(x)|, sn(x) =
n∑

k=1

fk(x) and rn(x) =
n∑

k=1

φk(x)fk(x). By

the Abel’s partial summation formula, we obtain form < n

rn(x)−rm(x) = (sn(x)− sm(x))φm+1(x)+
n∑

k=m+1

(sn(x)− sm(x)) (φk+1(x)− φk(x)) .

For a given ε > 0, since sn(x) converges uniformly, there exists n0 ∈ N such that

n,m ≥ n0 =⇒ ∀x ∈ A, |sn(x)− sm(x)| <
ε

3M
.

Note that

n∑
k=m+1

(sn(x)− sm(x)) (φk+1(x)− φk(x))

=
n∑

k=m+1

ε

3M
(φk(x)− φk+1(x)) +

n∑
k=m+1

( ε

3M
+ sn(x)− sm(x)

)
(φk+1(x)− φk(x))

≤
n∑

k=m+1

ε

3M
(φk(x)− φk+1(x))

(6.5)
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6.4.4 Dirichlet’s Test
Theorem 6.28. For sequences fn : A ⊂ Rm → R and gn : A ⊂ Rm → R, if ∃M > 0,

sup
x∈A

∣∣∣∣∣
n∑

k=1

fk(x)

∣∣∣∣∣ ≤ M ∀n ∈ N

and gn(x) is nonnegative and nonincreasing sequence of functions, i.e.,

gn+1(x) ≤ gn(x) and gn ≥ 0

such that
gn → 0 uniformly

, then
∞∑
n=1

fn(x)gn(x) converges uniformly on A.
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Chapter 7 | Special Functions and Summabil-
ity of Series

7.1 Power Series
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7.2 Summability of Series

7.2.1 Cesaro Summability

Definition 7.1. Set Sn =
n∑

k=1

ak and σn =
1

n

n∑
k=1

Sk. If lim
n→∞

σn = A, then we say that

the series
∞∑
k=1

ak is called Cesaro 1 -summable or ( C, 1 ) summable to A, and denote

∞∑
k=1

ak = A(C, 1)
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7.2.2 Abel Summability

Definition 7.2.
∞∑
k=1

ak is is summable in the sense of Abel if lim
x→1−

∞∑
k=1

akx
k = A, and we

denote
∞∑
k=1

ak = A (Abel).

Note that

summable =⇒ (C, 1) summable =⇒ Abel summable

and the inverse is not true in general.
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Chapter 8 | The Lebesgue Theory
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Chapter 9 | Functions of Several Variables
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Chapter 10 | Vector Analysis
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