
수능특강 화학1 선별자료

1.화학식량과 몰

1. 그림은 실린더 (Y)와 (Y)에 들어 있는 (Y_2,Y_2,g) 와 (Y_4,g) 의 혼합 기체가 들어 있는 것을 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, X와 Y는 임의 의 원소 기호이고, 실린더 속 기체의 온도와 압력은 일정하다.) [25024-0021]

----<보 기>--

- ㄱ. 실린더 속 기체의 전체 원자 수 비는 (가): (나)=5:13이다. $L. \frac{Y의 원자량}{X의 원자량} = \frac{1}{14}$ 이다.
- c. 실린더 속 기체 1L에 들어 있는 X의 질량비는 (가): (나)=1:2이다.

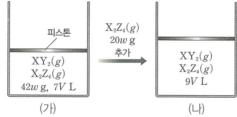
2. 표는 t° C, 1 atm에서 실린더 (가)와 (나)에 들어 있는 $X_{2}Y_{3}(g)$ 와 $X_{2}Y_{3}(g)$ 에 대한 자료이다.

실린더	기체의	질량(g)	전체 원자 수	밀도
걸닌더	X_2Y	X_2Y_2	신세 권사 ㅜ 	(상댓값)
(フト)	a	2b	5N	35
(나)	2a	b	4N	29

X의 원자량 Y의 원자량 은? (단, X와 Y는 임의의 원소 기호이다.) [25024-0024]

3. 표는 t °C, 1 atm에서 실린더 (가)~(다)에 들어 있는 기체에 대한 자료이다. 분자량비는 A: B=2: 3이고, $\frac{(\downarrow)$ 에 들어 있는 기체의 양(mol)}{(力)에 들어 있는 기체의 양(mol)}=\frac{5}{4}이다.

اعادا	기체의 질량(g)		전체 기체의	단위 부피당 전체 원자 수
실린더	A	В	밀도(g/L)	(상댓값)
(フト)	2w	3w	25d	25
(나)	w	aw	28 <i>d</i>	18
(다)	w	xw	24d	y


 $a \times \frac{x}{y} = [25024 - 0027]$

4. 표는 t° C, 1 atm에서 기체 (가)와 (나)에 대한 자료이다. $\frac{Z9 \ 원자량}{Y9 \ 위자량 + Y9 \ 위자량} = \frac{4}{11}$ 이 다.

기체	(フト)	(나)
 분자식	X_2Y_n	$Z_{n}Y_{2n}$
1g에 들어 있는 전체 원자 수(상댓값)	100	99
1g에 들어 있는 Y 원자 수	25N	33N

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단. X~Z는 임의의 원소 기호이다.) [25024-0029]

- ¬. t ℃, 1 atm에서 기체의 밀도비는 (가): (나)=33:50이다.
- L. n = 2이다. C. $\frac{Z의 원자량}{Y의 원자량} = \frac{6}{7}$ 이다.
- **5.** 그림 (γ) 는 실린더에 $XY_2(g)$ 와 $X_2Z_4(g)$ 가 들어 있는 것을, (ψ) 는 (γ) 의 실린더에 $X_2Z_4(g)$ 가 들어 있는 것을, (g) 20 w g이 추가된 것을 나타낸 것이다. (가)에서 실린더 속 기체의 $\frac{Z \, \text{원자 } \dot{\phi}}{X \, \text{위자 } \dot{\phi}} = \frac{8}{9}$ 이고, $\frac{\mathrm{Y}}{\mathrm{X}}$ 의 원자량 $=\frac{4}{3}$ 이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, X~Z는 임의의 원소 기호이고, 모든 기체는 반응하지 않으며, 실린더 속 기체의 온도와 압력은 일정하 다.) [25024-0030]

- ㄱ. (나)에서 실린더 속 기체의 $\frac{Z \, \Re x \, \dot{\varphi}}{X \, \Re x \, \dot{\varphi}} = \frac{16}{13}$ 이다.
- ㄴ. $\frac{Z의 원자량}{X의 원자량} = \frac{7}{6}$ 이다.
- c. 실린더 속 기체 1g에 들어 있는 전체 원자 수 비는 (가): (나)=93:91 이다.

6. 표는 t[°]C, 1 atm에서 실린더 (가)와 (나)에 들어 있는 기체에 대한 자료이다. B의 원자량 A의 원자량 = 2이다.

실린더	기체	기체의 질량(g)	A 원자 수 B 워자 수	전체 원자 수 (상댓값)	부피
(フト)	A_2 , BA_2	13w	x	23	V
(나)	BA ₂ , CA	11w	6	22	V

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, A~C는 임의의 원소 기호이다.) [25024-0031]

----<보 기>-

$$\neg. \ x = \frac{20}{3} \circ | \mathsf{T} |.$$

$$L.$$
 $\frac{C의 원자량}{A의 원자량} = \frac{3}{8}$ 이다.

ㄱ.
$$x = \frac{20}{3}$$
이다.
ㄴ. $\frac{C의 원자량}{A의 원자량} = \frac{3}{8}$ 이다.
ㄷ. $\frac{(나)에서 CA(g)의 질량}{(가)에서 A_2(g)의 질량} = 2$ 이다.

7. 표는 t° C, 1 atm에서 실린더 $(7)^{\circ}$ (다)에 들어 있는 기체에 대한 자료이다.

실린더	1	(フト)	(나)	(다)
기체의	X_aY_b	11w	22w	xw
질량(g)	$X_a Y_c$	38w	19w	yw
전체 원자 수	(상댓값)	13	11	24
Y 원자 수(·	상댓값)	7	5	12
기체의 부피(L)		V	V	zV

 $\frac{x+y}{z}$ 는? (단, X와 Y는 임의의 원소 기호이다.) [25024-0032]

수능특강 화학1 선별자료

2.화학 반응식과 용액의 농도

- 1. 다음은 실린더에 AB(g)와 $B_2(g)$ 를 넣고 $AB_2(g)$ 를 생성하는 반응을 완결시켰을 때에 대한 자료이다. $\frac{B의 원자량}{A의 원자량} = \frac{8}{7}$ 이다.

 - 화학 반응식: 2AB(g)+B₂(g)→2AB₂(g)
 반응 후 전체 기체의 밀도 = 5/4 이다.
 반응 후 생성물의 질량 = 23/16 이다.

실린더 속 기체에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단. A와 B는 임의의 원소 기호이고, 실린더 속 기체의 온도와 압력은 일정하다.) [25024-0046]

- 가. 반응 후 생성물의 양(mol) 남은 반응물의 양(mol) = 1이다.
 나. 반응 전 기체의 양(mol)은 AB(g) > B₂(g)이다.
 다. 남은 반응물은 B₂(g)이다.

2. 다음은 A(g)와 B(g)가 반응하여 C(g)를 생성하는 화학 반응식이다.

$$2A(g) + B(g) \rightarrow 2C(g)$$

표는 실린더에 A(g)와 B(g)의 질량을 달리하여 넣고 반응을 완결시킨 실험 I~Ⅲ에 대한 자료이다. z < 4y이다.

시청	실험 반응 전 질량(g		반응 후 <u>C(g)의 질량</u> 전체 기체의 질량
걸임	A(g)	B(g)	민 이 후 전체기체의질량
1	x	y	1
11	x	z	$\frac{5}{9}$
Ш	2x	4y	$\frac{5}{6}$

 $\frac{\text{C 의 분자량}}{\text{A의 분자량}} \times \frac{x}{z}$ 는? [25024-0047]

3. 다음은 A(g)와 B(g)의 반응에 대한 실험이다.

[화학 반응식]

○ aA(g)+B(g) → 2C(g) (a는 반응 계수)

[실험 과정]

- (가) 실린더에 A(g) 12wg을 넣고 부피(V₁)를 측정한다.
- (나) (가)의 실린더에 B(g) w g을 넣고 반응을 완결시킨 후 전체 기체의 부 피(V₂)를 측정한다.
- (다) (나)의 실린더에 B(g) 2wg을 추가하여 반응을 완결시킨 후 전체 기체 의 부피(V_3)를 측정한다.
- (라) (다)의 실린더에 A(g) 4wg을 추가하여 반응을 완결시킨 후 전체 기체 의 부피(V_A)를 측정한다.

[실험 결과]

- (나) 과정에서 넣어 준 B(g)는 모두 반응하였다.
- $OV_1 = 6L, V_2 = 6L, V_3 = 9L, V_4 = xL$

 $x \times \frac{(\Gamma)$ 과정 후 실린더 속 A(g) 또는 B(g)의 양(mol) 은? (단, 실린더 속 기체의 온도와 압력은 일정하다.) [25024-0048]

4. 다음은 A(g)와 B(g)가 반응하여 C(g)를 생성하는 화학 반응식이다.

$$A(g) + 3B(g) \rightarrow 2C(g)$$

표는 실린더에 A(g)와 B(g)의 질량을 달리하여 넣고 반응을 완결시킨 실험 I과 Π 에 대한 자료이다.

 실험	반응 전 질량(g)		전체 기체의 부피(L)		
<u> </u>	A(g)	B(g)	반응 전	반응 후	
1	a	b	20	10	
П	a	2b			

 C의 분자량
 Ⅱ에서 반응 후 실린더 속 전체 기체의 밀도
 는? (단, 실린더 속 기체의 온도

 A의 분자량
 Ⅱ에서 반응 전 실린더 속 전체 기체의 밀도
 는? (단, 실린더 속 기체의 온도

 와 압력은 일정하다.) [25024-0049]

5. 다음은 A(g)와 B(g)가 반응하여 C(g)를 생성하는 화학 반응식이다.

표는 $A(g) w g \circ f$ 들어 있는 실린더에 B(g)를 넣어 반응을 완결시켰을 때 넣어 준 B(g)의 총 질량에 따른 전체 기체의 부피와 밀도를 나타낸 것이다. 넣어 준 B(g)의 총 질량이 8 g 일 때 반응 후 실린더에 남은 반응물의 질량은 2g이다.

넣어 준 B(g)의 총 질량(g)	0	4	6	8
전체 기체의 부피(L)	V		2V	3 V
전체 기체의 밀도(g/L)	7 <i>d</i>	9		3 <i>d</i>

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 실린더 속 기체의 온도와 압력은 일정하다.) [25024-0050]

- ¬. ^w/_b>10이다.
 ∟. 넣어 준 B(g)의 총 질량이 3g일 때 생성된 C(g)의 질량은 17g이다.

6. 다음은 B(g)와 관련된 2가지 반응의 화학 반응식이다.

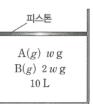
$$aA(g)+B(g) \rightarrow 2C(g)$$
, $B(g)+D(g)\rightarrow eE$ $(a, e = 받음 계수)$

표는 t° C, 1 atm에서 실린더에 A(g), B(g), D(g)의 양(mol)을 달리하여 넣고 반응을 완결시 킨 실험 【~Ⅲ에 대한 자료이다.

시칭	반응 7	전 기체의 양	(mol)	바ㅇ ㅎ 남은 반응물의 양(mol)
실험	A(g)	B(g)	D(g)	반응 후 <u>범은 한동물의 중(IIIOI)</u> 생성물의 양(mol)
1	1	2x	0	$\frac{3}{2}$
П	5	2x	0	$\frac{1}{4}$
III	0	2x	3	$\frac{1}{4}$

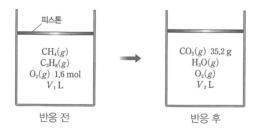
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 실린더 속 기체의 온도와 압력은 각각 t° C, 1 atm으로 일정하다.) [25024-0051]

- ㄱ. $\frac{e}{a} \times x = 1$ 이다. ㄴ. 반응 후 전체 기체의 부피는 Π 에서가 Π 에서보다 크다.
 - 다. I~Ⅲ 중 반응 후 남은 반응물의 양(mol)은 I에서가 가장 크다.


7. 다음은 A(g)와 B(g)가 반응하여 C(g)를 생성하는 화학 반응식과 실험이다.

[화학 반응식]

 \bigcirc A(g)+bB(g) $\rightarrow c$ C(g) (a, c는 반응 계수)


[실험 과정]

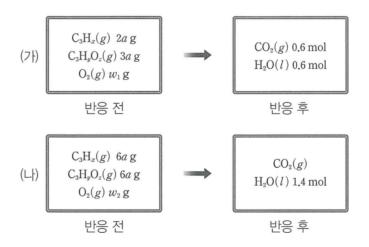
- (가) 실린더에 A(g)와 B(g)를 그림과 같이 넣는다.
- (나) (가)의 실린더에서 반응이 완결된 후 전체 기체의 부피 (V_1) 를 측정한다.
- (다) (나)의 실린더에 A(g) w g을 추가한 후 반응을완결되었을 때 전체 기체의 부피(V₂)를 측정한다.

[실험 결과]

- (나) 과정 후 남은 반응물은 B(g)이고, V₁=8L이었다.
- (다) 과정 후 C(g)만 존재하고, $V_2 = 8$ L이었다.
- (나) 과정 후 실린더 속 B(g)의 양(mol) × A의 분자량 은? (단, 기체의 온도와 압력은 일정 (나) 과정 후 실린더 속 C(g)의 양(mol) × B의 분자량 하다.) [25024-0052]
- 8. 그림은 $CH_4(g)$ 과 $C_3H_8(g)$ 이 $O_2(g)$ 와 반응할 때, 반응 전과 후 실린더에 들어 있는 물질을 모두 나타낸 것이다. 반응 전 $CH_4(g)$ 과 $C_3H_8(g)$ 의 질량 합은 12.4g이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, H, C, O의 원자량은 각각 1, 12, 16이고, 실린더 속 기체의 온도와 압력은 일정하다.) [25024-0053]

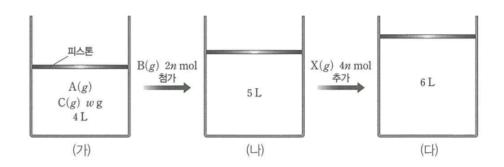
9. 다음은 A(g)와 B(g)가 반응하여 C(g)를 생성하는 화학 반응식이다.


$$A(g) + 2B(g) \rightarrow cC(g)$$
 (c는 반응 계수)

표는 실린더에 A(g)와 B(g)의 질량을 달리하여 넣고 반응을 완결시킨 실험 I과 Π 에 대한 자료이다. I에서 반응 후 전체 기체의 밀도 $=\frac{7}{5}$ 이다.

 실험	반응 전	질량(g)	반응 후 남은 반응물의 질량 (C(g)의 지랴
글임	A(g)	B(g)	만 등 후 <u>C(g)의 질량</u>
1	7	3	$\frac{1}{4}$
П	21	4	$\frac{1}{24}$

Ⅱ에서 반응후전체기체의 밀도 × c는? (단, 실린더 속 기체의 온도와 압력은 일정하다.) [25024-0054]


10. 그림은 강철 용기 (가)와 (나)에서 $C_3H_x(g)$ 와 $C_3H_yO_z(g)$ 이 $O_2(g)$ 와 각각 반응할 때, 반응 전과 후 용기에 들어 있는 물질을 모두 나타낸 것이다. $\frac{C_3H_yO_z$ 의 분자량 $=\frac{3}{2}$ 이다.

 $(\frac{x+y}{z}) \times \frac{w_1}{w_2}$ 은? (단, H, C, O의 원자량은 각각 1, 12, 16이다.) [25024-0055]

11. 다음은 A(g)와 B(g)가 반응하여 C(g)를 생성하는 화학 반응식이다.

그림 (가)는 실린더에 A(g)와 C(g)가 들어 있는 초기 상태를. (나)는 (가)의 실린더에 B(g) 2n mol을 첨가한 후 반응이 완결된 상태를 (다)는 (나)의 실린더에 X(g) 4n mol을 추가하여 반응이 완결된 상태를 나타낸 것이다. (가)에서 전체 기체의 양은 4n mol이고 (나)에서 반응 후 $\dfrac{\text{남은 반응물의 양 (mol)}}{\text{전체 기체의 양 (mol)}} = \dfrac{3}{10}$ 이다. X(g)는 A(g)와 B(g) 중 하나이며, (나)와 (다)에서 실린더에 들어 있는 기체는 나타내지 않았다.

 (Γ) 에서 실린더에 들어 있는 C(g)의 질량(g) 은? (단, 기체의 온도와 압력은 일정하다.)

[25024-0056]

12. 다음은 25℃의 A(aq)에 대한 실험이다.

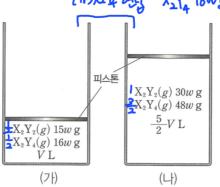
[실험 과정]

- (가) 25℃에서 밀도가 dg/mL인 a% A(aq) 50mL를 준비한다.
- (나) (가)의 A(aq) 20mL를 피펫으로 취하여 비커에 넣은 후 A(s) bg을 추 가로 녹인다.
- (다) (나)의 수용액을 250mL 부피 플라스크에 모두 넣고 표시선까지 물을 채우다.

[실험 결과]

○ 몰 농도는 a%A(aq)이 (다)에서 만든 수용액의 4배이다.

 $\frac{b}{a}$ 는? (단, 수용액의 온도는 25℃로 일정하다.) [25024-0058]


- ① $\frac{4}{25}d$ ② $\frac{17}{50}d$ ③ $\frac{17}{40}d$ ④ $\frac{13}{25}d$ ⑤ $\frac{4}{5}d$

수능특강 화학1 선별자료

손풀이

Comment: 통일서교 연립

1. 그림은 실린더 (Y)와 (Y)에 들어 있는 (Y_2,Y_2,g) 와 (Y_4,g) 의 혼합 기체가 들어 있는 것을 나타낸 것이다. (小)以本码引 Xxx 16wg =V

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, X와 Y는 임의 의 원소 기호이고, 실린더 속 기체의 온도와 압력은 일정하다.) [25024-0021]

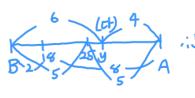
―<보 기>-**)**실린더 속 기체의 전체 원자 수 비는 (가) : (나)=5 : 13이다.

☑. 실린더 속 기체 1L에 들어 있는 X의 질량비는 (가): (나)=1:2이다. ▼ 보고 당 X원자 수가 X/2, X/4 같으면 (가)!(나)=|:|

Comment: (가) 와 나를 변화시키는 과정으로 보자 2. 표는 t° C, 1 atm에서 실린더 (가)와 (나)에 들어 있는 $X_2Y(g)$ 와 $X_2Y_2(g)$ 에 대한 자료이다.

 실린더	기체의 질량(g)		전체 원자 수	밀도	
걸닌더	X_2Y	X_2Y_2	전세 원자 구 6N 역	(상댓값)	51 7 → b=19
(フト)	a	$\frac{3b}{2b}$	5N %	35	405
(나)	2a	b	4N	29	29
X의 원자량	은? (단, X와 Y는	임의의 원소 기호이	3 V 다) [25024-0024]		18 5 -> a=6
Y의 원자량	2. (2, 11 , 12		, ,,, [2002] 002]		
花				X2Y : X2Y2=	9:17

Comment: 내분은신이다


3. 표는 t °C, 1 atm에서 실린더 (가)~(다)에 들어 있는 기체에 대한 자료이다. 분자량비는

A: B=2:3이고, $\frac{(\downarrow)$ 에 들어 있는 기체의 양(mol)}{(가)에 들어 있는 기체의 양(mol)}= \frac{5}{4}이다.

اعادا	기체의	질량(g)	전체 기체의	, 단위 부피당 전체 원자 수
실린더	A	В	∨ 밀도(g/L) ∨	(상댓값)
(フト)	$\frac{2}{2}$	3w	← 25d × 4	25
(나)	w	t taw	<u></u> 28d x 5	18
(다)	w	3 #w	24d	y

II A:B=3:2

1=4 X==

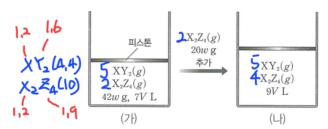
4. 표는 t° C, 1 atm에서 기체 (가)와 (나)에 대한 자료이다. $\frac{Z9 \ 원자량}{X9 \ 위자량 + Y9 \ 위자량} = \frac{4}{11}$ 이

다.

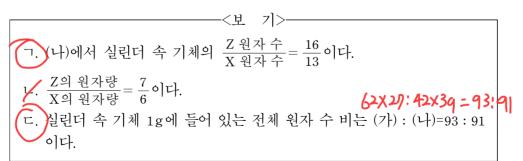
X+Y: x+2Y=33:50

기체	(フト)	(나)	_
분자식	X ₂ Y ₃ (33)	Z ₂ Y ₄ , (50)	
1g에 들어 있는 전체 원자 수(상댓값)	100	99	전체원과수 2 13
1g에 들어 있는 Y 원자 수	25N	33N	=n+2:3r

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로


원소 기호이다.) [25024-0029]

ㄱ..t ℃, 1 atm에서 기체의 밀도비는 (가) : (나)=33 : 50이다. **= 빚자량비** □ n = 2이다.
 □ 원자량
 □ 원자량
 □ 원자량


1)->2

Comment 沒水从及如此农州 茶水豆是创用 安剂 计

5. 그림 (가)는 실린더에 $XY_2(g)$ 와 $X_2Z_4(g)$ 가 들어 있는 것을, (나)는 (가)의 실린더에 X_2Z_4 (g) 20w g이 추가된 것을 나타낸 것이다. (가)에서 실린더 속 기체의 $\frac{Z \, \text{원자 수}}{X \, \text{원자 수}} = \frac{8}{9}$ 이고, Y의 원자량 $_{-}$ 4 olrl $\frac{\mathrm{Y}}{\mathrm{X}}$ 의 원자량 $=\frac{4}{3}$ 이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, X~Z는 임의의 원소 기호이고, 모든 기체는 반응하지 않으며, 실린더 속 기체의 온도와 압력은 일정하 다.) [25024-0030]

Comment:5와 製

اعادا	기체	기체의	A 원자 수	전체 원자 수	부피
실린더	기세 	질량(g)	B 원자 수	(상댓값)	ᆸ
(フト)	3.5 A ₂ , 1.5 BA ₂	13w	x	23 11.5	V
(나)	/ BA ₂ , / CA	11w	6	22	V

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (만, A~C는 임의의 원소 기호이다.) [25024-0031] 부피가 동일한데 원자수가 다음

 $\int_{-\infty}^{\infty} x = \frac{20}{3}$

(i) → (a)

Comment: 2st Eg

7. 표는 t °C, 1 atm에서 실린더 (가)~(다)에 들어 있는 기체에 대한 자료이다.

실린더		(フト)		(나)		(다)
기체의 $X_a Y_b$, o	11w	16,5W	22w	33W	3 w
질량(g) $X_a Y_c$	50W	38w	285 W	19w	0	59 w
전체 원자 수(상댓값)	15	13	12	11	9	24
Y 원자 수(상댓값)	9	7	6	5	3	12
기체의 부피(L)	V	\overline{V}	V	\overline{V}	√	\vec{r} V
~ _						2

 $\frac{x+y}{z}$ 는? (단, X와 Y는 임의의 원소 기호이다.) [25024-0032]

 $\frac{33+59}{2}=45$

型星 보면 를 제서 3까지 증가함수임

> (가)와(山)는 어딨자용상용과발과로 이루어져 있기 때문에 전체 원자수 차이는

(다)의 그는 정확히 절반 자전에 나오

comment: 부피 변화량→ 반응양

- 1. 다음은 실린더에 AB(g)와 $B_2(g)$ 를 넣고 $AB_2(g)$ 를 생성하는 반응을 완결시켰을 때에 대한 자료이다. $\frac{B9 원자량}{A9 원자량} = \frac{8}{7}$ 이다.

실린더 속 기체에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, A와 B는 임의의 원소 기호이고, 실린더 속 기체의 온도와 압력은 일정하다.) [25024-0046]

Comment! 한계 반응물찾게는 뭐든 통일시켜보자

2. 다음은 A(g)와 B(g)가 반응하여 C(g)를 생성하는 화학 반응식이다.

$$2A(g) + B(g) \rightarrow 2C(g)$$

표는 실린더에 A(g)와 B(g)의 질량을 달리하여 넣고 반응을 완결시킨 실험 Ⅰ~Ⅲ에 대한 자료이다. z < 4y이다.

	실험	반응 전 질량(g)		반응 후 <u>C(g)의 질량</u> 반응 후 <u>기체 기체 의 기라</u>
	2 2	A(g)	B(g)	전체 기체의 질량
	1	x –>(y - y	□ C만한제 ⇒ 반응질량비고생
正好好好 即	- 11	$\geq x$	22 4:1	2 C+ A 59 +4 IONA A7- 남계 반영일 이외에
	ااا را 2x - عير	4y - 2y	$\frac{2x+2y=5}{2y=1} + 1 \left(\frac{5}{6x} + 1\right) + \frac{3}{6x} + 1 \left(\frac{5}{6x} + 1\right) + \frac{3}{6x} + 3$	
		2 _A	В	《=>y (x) 好

 $\frac{\text{C 의 분자량}}{\text{A 의 부자량}} \times \frac{x}{z}$ 는? [25024-0047]

comment: 부피 변화량→ 반응양 심화: 한계반원 가리고 풀기

3. 다음은 A(g)와 B(g)의 반응에 대한 실험이다.

[화학 반응식]

○ A(g)+B(g)→2C(g) (a는 반응 계수)

[실험 과정]

- (가) 실린더에 **6**A(g) 12w g을 넣고 부피(V₁)를 측정한다.
- (나) (가)의 실린더에 B(g) wg을 넣고 반응을 완결시킨 후 전체 기체의 부 피 (V_2) 를 측정한다.
- (다) (나)의 실린더에AB(g) 2wg을 추가하여 반응을 완결시킨 후 전체 기체 의 부피(V₂)를 측정한다. (다) 기수 6C 생성 위해 3B소모 => B 3wa= 6ml
- (라) (다)의 실린더에 A(g) 4wg을 추가하여 반응을 완결시킨 후 전체 기체 의 부피 (V_4) 를 측정한다.

[실헊 결과]

- [실험 결과] 부지 반화가 있어야 하는 이생님 (나) 과정에서 넣어 준 B(g)는 모두 반응하였다.
- $V_1 = 6L, V_2 = 6L, V_3 = 9L, V_4 = 6L \rightarrow 2B+8C$

A 学者の内 知 电引×ナロニュ

 $x \times \frac{(\Gamma)$ 과정 후 실린더 속 A(g) 또는 B(g)의 양(mol) 은? (단, 실린더 속 기체의 온도와 압 (나) 과정 후 실린더 속 C(g)의 양(mol) 2A+4C

력은 일정하다.) [25024-0048]

Comment: 古色 世界是 X >> 世界过程 世界 17

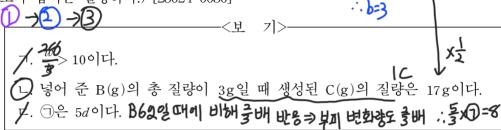
4. 다음은 A(g)와 B(g)가 반응하여 C(g)를 생성하는 화학 반응식이다.

$$A(g) + 3B(g) \rightarrow 2C(g)$$

표는 실린더에 A(g)와 B(g)의 질량을 달리하여 넣고 반응을 완결시킨 실험 Ⅰ과 Ⅱ에 대한 자료이다.

 실험	반응 전	질량(g)	전체 기체	의 부피(L)
2 2	A(g)	B(g)	반응 전 🗡	반응 후
I	1 a - w	3 b-b	20	> 10
П	1 a - 0	6 2b-b		

 C의 분자량 × Ⅱ에서 반응 후 실린더 속 전체 기체의 밀도 는? (단, 실린더 속 기체의 온도 표 이 분자량 × Ⅱ에서 반응 전 실린더 속 전체 기체의 밀도 본 기체의 본도 와 압력은 일정하다.) [25024-0049]


Comment: 취기된 생생물당 부피 변화량이 달라졌다면 반응완결생 포함함

5. 다음은 A(g)와 B(g)가 반응하여 C(g)를 생성하는 화학 반응식이다.

표는 A(g)wg이 들어 있는 실린더에 B(g)를 넣어 반응을 완결시켰을 때 넣어 준 B(g)의 총 질량에 따른 전체 기체의 부피와 밀도를 나타낸 것이다. 넣어 준 B(g)의 총 질량이 8g일 때 반응 후 실린더에 남은 반응물의 질량은 2g이다. +6 \neq +2 > **분은 반응물** B B B

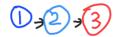
				7
넣어 준 B(g)의 총 질량(g)	0	4	6	8
전체 기체의 부피(L)	V		2V	3 <i>y</i>
전체 기체의 밀도(g/L)	7d	9		3d

₩ **1** 24 32 여개선 0월 34 **9** 36 기:9에서 영화사이온조정 이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단,)실린더 속 기체의 온도와 압력은 일정하다.) [25024-0050] 38:24

Comment: 논리적으로 한用 比鲁里族 巴甸的科

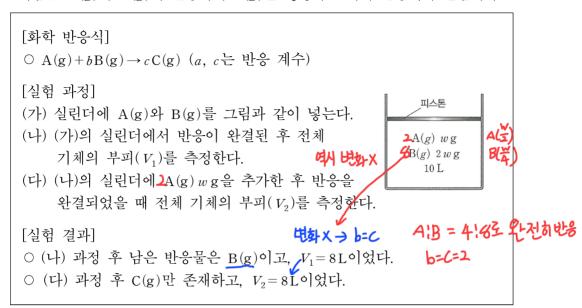
6. 다음은 B(g)와 관련된 2가지 반응의 화학 반응식이다.

표는 t \mathbb{C} , 1 atm에서 실린더에 A(g), B(g), D(g)의 양(mol)을 달리하여 넣고 반응을 완결시킨 실험 $I \sim \mathbb{H}$ 에 대한 자료이다.


실험	반응 7 A(g)	전 기체의 양 B(g)	(mol) D(g)	반응 후 남은 반응물의 양(mol) 생성물의 양(mol)	TOMA HOLDE
I	1-	2x-21	0	B: C=3: 2 当当 B4 本 できせる 2	를 가 수 이라 모습
II	5 -4	ر <u>د</u> - ع <u>د</u>	0	$\frac{1}{4x} = \frac{1}{4} : x = 1 + \frac{1}{4}$	的其正复合AII 故刊
III	0	<u> </u>	3 -1	$\frac{1P}{4E} : e=2 \frac{1}{4}$	- 5 107L 로 통일시키면 5 2X 로 통일시키면 - C 약이 목의 T: 126, C4

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 실린더 속 기체의 온도와 압력은 각각 t ℃, 1 atm으로 일정하다.) [25024-0051] B:C=-1;→도 반응하으로

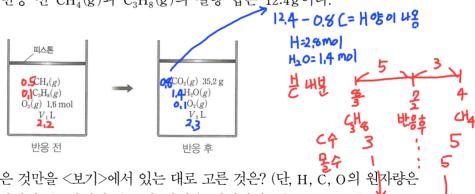
의 압력은 각각 t ℃, 1 atm으로 일정하다.) [25024-0051]


| 기양된 I:B% I:B% | 1:B% | 1:

【 I ~Ⅲ 중 반응 후 남은 반응물의 양(mol)은 I 에서가 가장 크다.

Comment: 부피 변화량→ 반응양 심화: 한계반器 가리고 풀기

7. 다음은 A(g)와 B(g)가 반응하여 C(g)를 생성하는 화학 반응식과 실험이다.



 (나) 과정 후 실린더 속 B(g)의 양(mol)
 ★A의 분자량 은? (단, 기체의 온도와 압력은 일정 (나) 과정 후 실린더 속 C(g)의 양(mol)

 하다.) [25024-0052]
 →A

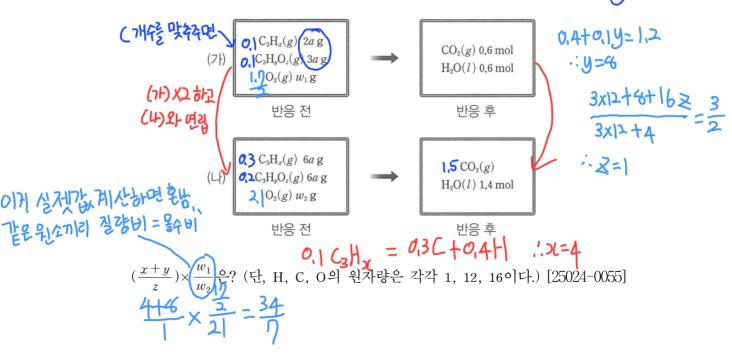
Comment: 내발딸깍

8. 그림은 $CH_4(g)$ 과 $C_3H_8(g)$ 이 $O_2(g)$ 와 반응할 때, 반응 전과 후 실린더에 들어 있는 물질을 모두 나타낸 것이다. 반응 전 $CH_4(g)$ 과 $C_3H_8(g)$ 의 질량 합은 12.4g이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, H, C, O의 원자량은 각각 1, 12, 16이고, 실린더 속 기체의 온도와 압력은 일정하다.) [25024-0053]

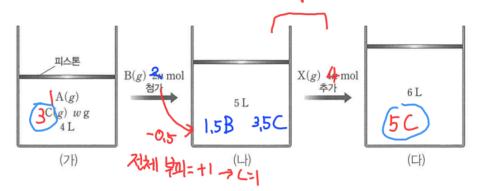
지 한승 전
$$\frac{\mathrm{CH_4(g)} \mathfrak{P} \ \mathfrak{P} \ (\mathrm{mol})}{\mathrm{C_3H_8(g)} \mathfrak{P} \ \mathfrak{P} \ (\mathrm{mol})} = 3$$
이다. 한승 후 $\frac{\mathrm{H_2O(g)} \mathfrak{P} \ \mathfrak{P} \ (\mathrm{mol})}{\mathrm{O_2(g)} \mathfrak{P} \ \mathfrak{P} \ (\mathrm{mol})} = 14$ 이다. 한 $\frac{V_2}{V_1} = \frac{23}{22}$ 이다.

Comment: A를 통일시키면 관찰이 편하겠는걸..


9. 다음은 A(g)와 B(g)가 반응하여 C(g)를 생성하는 화학 반응식이다. 계수대로 반응성이다. 계수대로 반응성이다. 계수대로 반응성이다. 계수대로 반응성이나로 A(g)+2B(g)→ C(g) (c는 반응 계수) / 1-5=3-C ∴(=|

표는 실린더에 A(g)와 B(g)의 질량을 달리하여 넣고 반응을 완결시킨 실험 I과 Π 에 대한 자료이다. I에서 반응 후 전체 기체의 밀도 $=\frac{7}{5}$ 이다.

 실험	반응 전	질량(g)	반응 후 남은 반응물의 질량
글임 	A(g)	B(g)	전 중 후 <u>C(g)</u> 의 질량
1	2 -2	973	1 4 4 -5 의 A:한계반응달
11	21	3 45	$\frac{1}{24}$


Comment: 9번이랑 비슷, 통일사기자

 $10. \ \, \text{그림은 강철 용기 (가)와 (나)에서 } \ \, \text{C}_3\text{H}_x(g)\text{와 } \ \, \text{C}_3\text{H}_y\text{O}_z(g)\text{이 } \ \, \text{O}_2(g)\text{와 각각 반응할 때,}$ 반응 전과 후 용기에 들어 있는 물질을 모두 나타낸 것이다. $\frac{\text{C}_3\text{H}_y\text{O}_z\text{의 분자량}}{\text{C}_3\text{H}_x\text{의 분자량}} \underbrace{ \left\{ \begin{array}{c} 3 \\ 2 \end{array} \right\} }_{2} \text{IT}.$

Comment: B 0.5 空→ 계수의 반만큼 반응

11. 다음은 A(g)와 B(g)가 반응하여 C(g)를 생성하는 화학 반응식이다.

 (Γ) 에서 실린더에 들어 있는 C(g)의 질량(g) 은? (단, 기체의 온도와 압력은 일정하다.)

Comment: 선지에 다 성었고 소니로뒤도 모두 건 가능해서 소니로두면 계산 편함

12. 다음은 25℃의 A(aq)에 대한 실험이다.