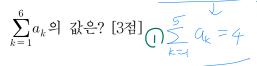
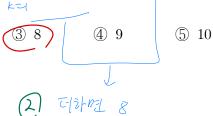
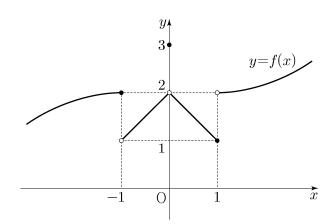
제 2 교시

수학 영역


5지선다형


- 1. $\left(\frac{5}{\sqrt[3]{25}}\right)^{\frac{3}{2}}$ 의 값은? [2점]

- ① $\frac{1}{5}$ ② $\frac{\sqrt{5}}{5}$ ③ 1 ④ $\sqrt{5}$) ⑤ 5


- 2. 함수 $f(x) = x^2 + x + 2$ 에 대하여 $\lim_{h \to 0} \frac{f(2+h) f(2)}{h}$ 의
- 2 f(x) = 2x + 1, f(x) = 5

3. 수열 $\{a_n\}$ 에 대하여 $\sum_{k=1}^{3}(a_k+1)=9$ 이고 $a_6=4$ 일 때,

4. 함수 y = f(x)의 그래프가 그림과 같다.

 $\lim_{x \to 0+} f(x) + \lim_{x \to 1-} f(x) 의 값은? [3점]$

- **⑤** 5

① 6

[3점]

- 5. 함수 $f(x) = (x^2 1)(x^2 + 2x + 2)$ 에 대하여 f'(1)의 값은?
- (1)(当为中色) 22×22+2
 - ② 7 ③ 8
- (§ 10)
- (2) 0 + 2×5 = 10

7. x에 대한 방정식 $x^3 - 3x^2 - 9x + k = 0$ 의 서로 다른 실근의 개수가 2가 되도록 하는 모든 실수 k의 값의 합은? [3점]

✓ 內差 ②

- ① 13 👤 ② 1
- 3 19 4 2
 - 4 22
-) 정체

3x²-6x-9 3(x-3)(x+1)

- -1
- 3-1): fc-1), fc3)
 5+k -20+k

⑤ 25

k=-5 k=21)

(3-2): 2 X fc1)

= -11+k=0

K 31 : (22)

8. $\overbrace{a_1a_2}<0$ 인 등비수열 $\{a_n\}$ 에 대하여

$$\underbrace{a_6 = 16, \quad 2a_8 - 3a_7 = 32}_{\text{일 때, } a_0 + a_1, \text{ 의 값은? [3점]}}$$

일 때, $a_9 + a_{11}$ 의 값은? [3점]

$$(1)$$
 (2) (3) (3) (4) (4) (4)

$$2 - \frac{3}{2}$$

$$3 - \frac{1}{2}$$

$$\frac{1}{2}$$

$$\Rightarrow$$
 $2r^2-3r-2=0$

$$\Rightarrow (2r+1)(r-2)=0$$

ライナ 2/41? = トモ 号午! => トニー (37) a1 a2 対しまりを 対しく)

 $a_{q} = 16 \cdot r^{3} = (-2)$ $a_{11} = 16 \cdot r^{5} = (-\frac{1}{2})$

Sub 원리에 음식? 공네가 음식일까...

9. 함수

$$f(x) = \begin{cases} x - \frac{1}{2} & (x < 0) \\ -x^2 + 3 & (x \ge 0) \end{cases}$$

에 대하여 함수 $(f(x)+a)^2$ 이 실수 전체의 집합에서 연속일 때, 상수 a의 값은? [4점]

(-1) (-1) (-1) (-1)

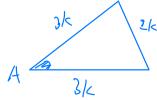
$$\Rightarrow a^2 - a + \frac{1}{4} = a^2 + 6a + 9$$

$$= \frac{35}{4} / \alpha = -\frac{5}{4}$$

-> 建煤炭 72 70 1 3 3H- - 至4

10. 다음 조건을 만족시키는 삼각형 ABC의 외접원의 넓이가 9π일 때, 삼각형 ABC의 넓이는? [4점]

(7) $3 \sin A = 2 \sin B$


(나) $\cos B = \cos C$

① $\frac{32}{9}\sqrt{2}$ ② $\frac{40}{9}\sqrt{2}$

 $3 \frac{16}{3} \sqrt{2}$

a = 2k, 6 = 3k

(4) all 4 13+ < < + 180° (123 (45 75 28)) LB=LC / b=c

们进一利电影, 可是到了 A 36003.

$$18k^{2}(1-\cos A)=4k^{2}$$

$$\Rightarrow cosA = \frac{h}{g}, SinA = \frac{412}{9}$$

$$\frac{2k}{4k} = 6 \implies k = \frac{4k}{3}$$

$$\frac{1}{2} \cdot 9k^2 \cdot \frac{4k^2}{9} = 2k^2 = \frac{64}{3}k_2$$

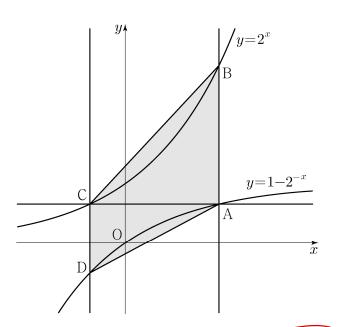
아동변수선

 $2\sqrt{2}k^2 = 2\sqrt{2} \cdot \frac{32}{3} = \frac{64}{3}\sqrt{2}$

이 문제지에 관한 저작권은 한국교육과정평가원에 있습니다.

11. 최고차항의 계수가 1이고 f(0) = 0인 삼차함수 f(x)가

$$\lim_{x \to a} \frac{f(x) - 1}{x - a} = 3$$
 \(\int \frac{\frac{f(x) - 1}{x - a}}{x - a} = 3

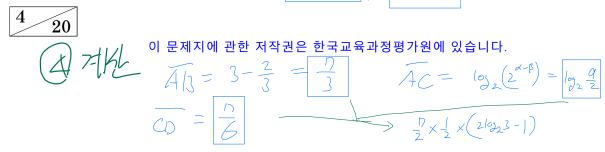

을 만족시킨다. 곡선 y = f(x) 위의 점 (a, f(a))에서의 접선의 y 절편이 4일 때, f(1)의 값은? (단, a는 상수이다.) [4점]

(2) $y = 3(x-\alpha)+1$ $\chi = 0$ $\chi = 0$ $\chi = 0$ $\chi = 0$

- (3) 1/2/3/4 3/18. and the 2/97 204 (X-01) (2011 404 (x+17) 3 371!
- $\Rightarrow (x+1)^3 + k(x+1)^2 + 3(x+1) + 1$
- 25-6 740g → 5+k=0, k=-5
- (5) f(1) = 8 20 + 6 + 1 = (-5)

及発達()

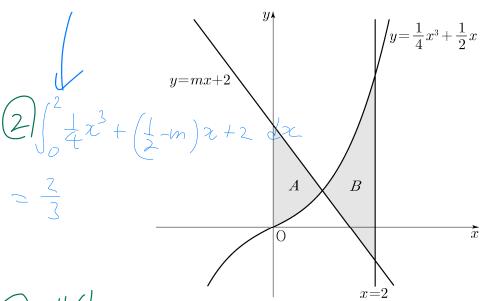
12. 그림과 같이 곡선 $y=1-2^{-x}$ 위의 제1사분면에 있는 점 A를 지나고 y축에 평행한 직선이 곡선 $y=2^x$ 과 만나는 점을 B라 하자. 점 A를 지나고 x축에 평행한 직선이 곡선 $y=2^x$ 과 만나는 점을 C. 점 C를 지나고 y축에 평행한 직선이 곡선 $y=1-2^{-x}$ 과 만나는 점을 D라 하자. $\overline{AB}=2\overline{CD}$ 일 때, 사각형 ABCD의 넓이는? [4점]



- ① $\frac{5}{2}\log_2 3 \frac{5}{4}$ ② $3\log_2 3 \frac{3}{2}$ ③ $\frac{7}{2}\log_2 3 \frac{7}{4}$

- $4 \log_2 3 2$ $5 \frac{9}{2} \log_2 3 \frac{9}{4}$
- ① 아닌게 A,B 의 고과 크를 X, / C, D 의 고과 포를
- $= 2^{6} = 1 2^{-\alpha} / 2^{\alpha} (1 2^{-\alpha}) = 2 \left\{ 2^{6} (1 2^{-\beta}) \right\}$ $= 2^{\alpha} + 2^{-\alpha} - 1 = 2 \left\{ -2^{-\alpha} + \frac{1}{1 - 2^{-\alpha}} \right\}$ ⇒ 집 않은 31성이 나오게 정...
- 로(내한 같은 224프에서 불아~ 약사!

$$2^{\alpha} - 2^{\beta} = 2 \left\{ (1 - 2^{-\alpha}) - (1 - 2^{-\beta}) \right\}$$


- $\Rightarrow 2^{\alpha} 2^{\beta} = 2^$

13. 곡선 $y = \frac{1}{4}x^3 + \frac{1}{2}x$ 와 직선 y = mx + 2 및 y축으로

둘러싸인 부분의 넓이를 A, 곡선 $y = \frac{1}{4}x^3 + \frac{1}{2}x$ 와 두 직선 y = mx + 2, x = 2로 둘러싸인 부분의 넓이를 B라 하자.

 $B-A=\frac{2}{3}$ 일 때, 상수 m의 값은? (단, m<-1) [4점]

(3) 7/1/2

$$\left[\frac{1}{6}\chi^4 + \left(\frac{1}{4} - \frac{m}{2}\right)\chi^2 - 2\chi\right]_0^2 = \frac{2}{3}$$

 $[+]-2m-4=\frac{2}{3}$

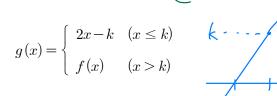
14. 다음 조건을 만족시키는 모든 자연수 k의 값의 합은? [4점]

 $\log_2 \sqrt{-n^2 + 10n + 75} - \log_4 (75 - kn)$ 의 값이 양수가 되도록 하는 자연수 n의 개수가 12이다.

⑤ 10 (1) 独 372은 본능

$$-n^{2}+10n+15>0$$
 $) 5-kn>0$
 $\Rightarrow -(n-15)(n+5)>0$
 $\Rightarrow n<\frac{5}{2}$

 $-n^{2}+(10+1k)n>0$


3 र्सन स्थे Sub k= 2/01/47/1, 19E1 Goly2+ 3½, who or 15 >+ ok 3117531

(301/K^/ Ok)

(B) all 12. xx 0123 0k)

수학 영역

15. 최고차항의 계수가 1인 삼차함수 f(x)와 상수 $k(k \ge 0)$ 에 (1) ga 22=1 대하여 함수

가 다음 조건을 만족시킨다.

- (가) 함수 g(x)는 실수 전체의 집합에서 증가하고 미분가능하다. (2) f(k)=k f(k)=2
- (나) 모든 실수 x에 대하여 \Rightarrow $(2c/k)^3 + \alpha(2c/k)^2 + 2(2c/k) + k$ $\int_{0}^{x} g(t) \{ |t(t-1)| + t(t-1) \} dt \ge 0$ $\int_{3}^{x} g(t) \{ |(t-1)(t+2)| - (t-1)(t+2) \} dt \ge 0$ 이다.

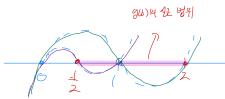
 $g(\underline{k+1})$ 의 최솟값은? [4점]

- ① $4-\sqrt{6}$ ② $5-\sqrt{6}$ ③ $6-\sqrt{6}$ ④ $7-\sqrt{6}$ ⑤ $8-\sqrt{6}$

- (3) od...

中安全 全经公司、 宁安全中 四四十四里之 나子에 经过去年 到。

图 建双设置门



 $\int_{3}^{x} g(b)(t-1)(t+1) dt \leq 0 \qquad \int_{3}^{x} o dt \geq 0 \qquad (2602)$

 $1 \leq \frac{k}{2}$

[19] 의계 8(2) 经 개는 [개!]

이 같으고 넓이는 음식 ! 뭐 넓이는 양속이야 할 O MAH

=> पिरीर्द्या अंधी

- - 6 K991: | 25K54
- 2 all 123 4/0/2 3/1/0 0 0123, 12 g(6) (6-1) (tf2) d6 50

1802 495 36 34.

20

단답형

- 16. 방정식 $\log_2(x+1) 5 = \log_1(x-3)$ 을 만족시키는 실수 x의 값을 구하시오. [3점] ① 신속 2건 (조)~17
 - (2) $\log_2(x+1) + (\log_2(x-2)) = 5$ 3 - 2x - 3 = 32
 - \Rightarrow $x^2-1x-35=6/(2-9)(2+5)=0$

D 四色 製造四 型製 60

 $3(x-k)^2 + 2\alpha(x-k) + 2$ $\Rightarrow \alpha^2 - 6 \le 0$ $\Rightarrow \alpha^2 - 6 \le 0$ $\Rightarrow \alpha^2 + 2\alpha x + 2$ JUL 413 72

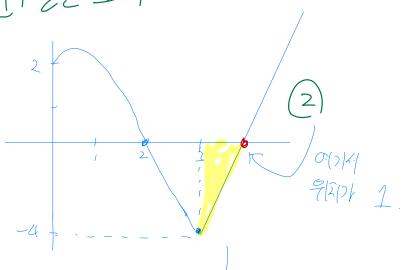
-16 < C1 < 6

- A 9(K+1) 31/2
- $= 1+\alpha+2+k$
- = 3-16+ (k 3/5)
- $\mathbf{17.}$ 함수 f(x)에 대하여 $f'(x) = 6x^2 + 2$ 이고 f(0) = 3일 때, f(2)의 값을 구하시오. [3점]
 - (1) $f(x) = 2x^3 + 2x + 3$
 - (2) fcr)= 16+4+3= (23)

[3점]

20

18. $\sum_{k=1}^{9} (ak^2 - 10k) = 120 일 때, 상수 <math>a$ 의 값을 구하시오. [3점]

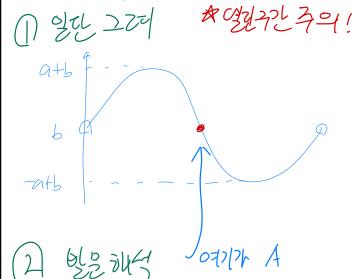

$$\Rightarrow 0.15.19 = 540$$

19. 시각 t=0일 때 원점을 출발하여 수직선 위를 움직이는 점 P의 시각 $t(t \ge 0)$ 에서의 속도 v(t)가

$$v(t) = \begin{cases} -t^2 + t + 2 & (0 \le t \le 3) \\ k(t-3) - 4 & (t > 3) \end{cases}$$

이다. 출발한 후 점 P의 운동 방향이 두 번째로 바뀌는 시각에서의 점 P의 위치가 1일 때, 양수 k의 값을 구하시오.

M 25 229

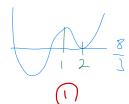


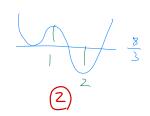
$$2)\left[-\frac{1}{3}t^{3}+\frac{1}{2}t^{2}+2t\right]^{3}$$

$$\frac{1}{2}$$

20. 5 이하의 두 자연수 a, b에 대하여 열린구간 $(0, 2\pi)$ 에서 정의된 함수 $y = a \sin x + b$ 의 그래프가 직선 $x = \pi$ 와 만나는 점의 집합을 A라 하고, 두 직선 y = 1, y = 3과 만나는 점의 집합을 각각 B, C라 하자. $n(A \cup B \cup C) = 3$ 이 되도록 하는 a, b의 순서쌍 (a, b)에 대하여 a + b의 최댓값을 M, 최솟값을 m이라 할 때, $M \times m$ 의 값을 구하시오. [4점]

2/4/ 274 F2/2 26/29/1/ 324


이 문제지에 관한 저작권은 한국교육과정평가원에 있습니다.


- **21.** 최고차항의 계수가 1인 사차함수 f(x)가 다음 조건을 만족시킨다.
 - (r) $f'(a) \leq 0$ 인 실수 a의 최댓값은 2이다.
 - (나) 집합 $\{x \mid f(x) = k\}$ 의 원소의 개수가 3 이상이 되도록 하는 실수 k의 최솟값은 $\frac{8}{3}$ 이다.

f(0) = 0, f'(1) = 0일 때, f(3)의 값을 구하시오. [4점]

(71): f(z)=0, 2 0/3/2 3/12/2

(4): 34 321241 324, => 332 3!



- 2 £ fa > 3 0133 B5!
- 4) 4 2/7

x-29/4 2/3/23, 22 7/3. $(x-2)(x^2+ax+b)+\frac{3}{2}$

 $f(a) = 0 \implies 4b + \frac{8}{3} = 0 \implies \left(b = -\frac{2}{3}\right)$

f(1) = 0 =) $2(x-1)(x^2+ax-\frac{2}{3}) + (x-1)^2(2x+a)$

 $\Rightarrow -2(\frac{1}{2}+\alpha)+(2+\alpha)=0$

 $\Rightarrow -\alpha + \frac{4}{3} = 0 \Rightarrow$

 $(9+4-\frac{2}{3})+\frac{8}{3}$

22. 수열 $\{a_n\}$ 은 $(a_2 = -a_1) \rightarrow (2) \quad (0) = k + \frac{1}{2} \quad (2) \quad (3) = k + \frac{1}{2} \quad (3) = k + \frac{1}{2}$

이고, $n \ge 2$ 인 모든 자연수 n에 대하여

 $a_{n+1} = \left\{ \begin{array}{ll} a_n - \sqrt{n} \times a_{\sqrt{n}} & (\sqrt{n} \text{ o) 자연수이고 } a_n > 0 \text{ 인 경우}) \\ a_n + 1 & (그 외의 경우) \\ & & \downarrow \\ \end{array} \right.$

를 만족시킨다. $a_{15}=1$ 이 되도록 하는 모든 a_1 의 값의 $\stackrel{\frown}{\text{a}}$ 그 $\stackrel{\frown}{\text{a}}$ $\stackrel{\frown}{\text{c}}$ 구하시오. [4점]

() ०<u>५</u>३२५ भाग्र

|C| - |C|

- (6) 케이스 확성
- - $\left(\begin{array}{c} \gamma \end{array} \right) \Rightarrow \frac{n}{4} \times \left(1 \times 12 \right) = 2 \times \left(1 \left(23 \right) \right)$

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인
- 이어서, **'선택과목(확률과 통계)**」문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.

제 2 교시

수학 영역(확률과 통계)

5지선다형

23. 네 개의 숫자 1, 1, 2, 3을 모두 일렬로 나열하는 경우의 수는? [2점]

- ① 8 ② 10 ③ 12 ④ 14
- **⑤** 16

24. 두 사건 A, B는 서로 배반사건이고

$$P(A^{C}) = \frac{5}{6}, P(A \cup B) = \frac{3}{4}$$

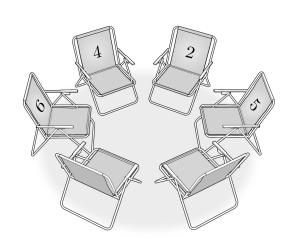
일 때, $P(B^C)$ 의 값은? [3점]

- ① $\frac{3}{8}$ ② $\frac{5}{12}$ ③ $\frac{11}{24}$ ④ $\frac{1}{2}$ ⑤ $\frac{13}{24}$

25. 다항식 $(x^2-2)^5$ 의 전개식에서 x^6 의 계수는? [3점]

- $\bigcirc -50$ $\bigcirc -20$ $\bigcirc 10$ $\bigcirc 40$

- **⑤** 70
- 26. 문자 a, b, c, d 중에서 중복을 허락하여 4개를 택해 일렬로 나열하여 만들 수 있는 모든 문자열 중에서 임의로 하나를 선택할 때, 문자 a가 한 개만 포함되거나 문자 b가 한 개만 포함된 문자열이 선택될 확률은? [3점]


- ① $\frac{5}{8}$ ② $\frac{41}{64}$ ③ $\frac{21}{32}$ ④ $\frac{43}{64}$ ⑤ $\frac{11}{16}$

수학 영역(확률과 통계)

27. 1부터 6까지의 자연수가 하나씩 적혀 있는 6개의 의자가 있다. 이 6개의 의자를 일정한 간격을 두고 원형으로 배열할 때, 서로 이웃한 2개의 의자에 적혀 있는 수의 합이 11이 되지 않도록 배열하는 경우의 수는?

(단, 회전하여 일치하는 것은 같은 것으로 본다.) [3점]

- ① 72
- ② 78
- 3 84
- **4** 90
- ⑤ 96

28. 탁자 위에 놓인 4개의 동전에 대하여 다음 시행을 한다.

4개의 동전 중 임의로 한 개의 동전을 택하여 한 번 뒤집는다.

처음에 3개의 동전은 앞면이 보이도록, 1개의 동전은 뒷면이 보이도록 놓여 있다. 위의 시행을 5번 반복한 후 4개의 동전이 모두 같은 면이 보이도록 놓여 있을 때, 모두 앞면이 보이도록 놓여 있을 확률은? [4점]

- $2 \frac{35}{64}$ $3 \frac{9}{16}$ $4 \frac{37}{64}$ $5 \frac{19}{32}$

500 뒷면

수학 영역(확률과 통계)

단답형

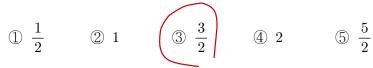
- 29. 40개의 공이 들어 있는 주머니가 있다. 각각의 공은흰 공 또는 검은 공 중 하나이다.
 - 이 주머니에서 임의로 2개의 공을 동시에 꺼낼 때, 흰 공 2개를 꺼낼 확률을 p, 흰 공 1개와 검은 공 1개를 꺼낼 확률을 q, 검은 공 2개를 꺼낼 확률을 r이라 하자. p=q일 때, 60r의 값을 구하시오. (단, p>0) [4점]
- **30.** 집합 $X = \{-2, -1, 0, 1, 2\}$ 에 대하여 다음 조건을 만족시키는 함수 $f: X \rightarrow X$ 의 개수를 구하시오. [4점]
 - (가) X의 모든 원소 x에 대하여 $x+f(x) \in X$ 이다.
 - (나) $x = -2, -1, 0, 1 일 때 <math>f(x) \ge f(x+1)$ 이다.

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
- 이어서, 「선택과목(미적분)」 문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.

제 2 교시

수학 영역(미적분)

5지선다형


23.
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n + \left(\frac{1}{3}\right)^{n+1}}{\left(\frac{1}{2}\right)^{n+1} + \left(\frac{1}{3}\right)^n} \stackrel{\text{deg}}{\to} \text{ The sum } 2.$$

$$\frac{1}{2} = 2$$

24. 곡선 $x \sin 2y + 3x = 3$ 위의 점 $\left(1, \frac{\pi}{2}\right)$ 에서의 접선의 기울기는? [3점]

(1) 岩岩 明显

2 46

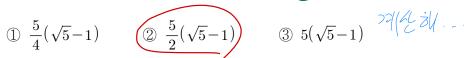
$$0 - 2y' + 3 = 0$$
 $\left(y' = \frac{3}{2}\right)$

25. 수열 $\{a_n\}$ 이

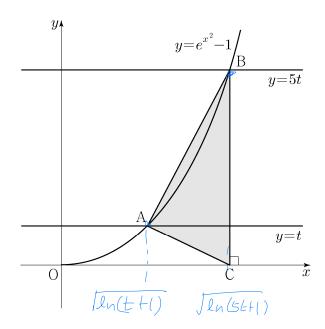
$$\sum_{n=1}^{\infty} \left(a_n - \frac{3n^2 - n}{2n^2 + 1} \right) = 2$$

를 만족시킬 때, $\lim_{n \to \infty} (a_n^2 + 2a_n)$ 의 값은? [3점]

- ① $\frac{17}{4}$ ② $\frac{19}{4}$ ③ $\frac{21}{4}$ 〉 ④ $\frac{23}{4}$ ⑤ $\frac{25}{4}$


① 设在长程 → 연考항 0 年間、

$$\Rightarrow$$
 $Q_{in} Q_{in} = \frac{3}{2}$


$$2712 = 214$$

26. 양수 t에 대하여 곡선 $y = e^{x^2} - 1$ $(x \ge 0)$ 이 두 직선 y = t, y=5t와 만나는 점을 각각 A, B라 하고, 점 B에서 x축에 내린 수선의 발을 C라 하자. 삼각형 ABC의 넓이를 S(t)라 할 때,

 $\lim_{t\to 0+} \frac{S(t)}{t\sqrt{t}}$ 의 값은? [3점]

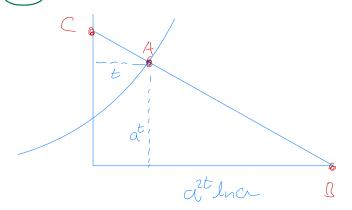
- $4 \frac{5}{4}(\sqrt{5}+1)$ $5 \frac{5}{2}(\sqrt{5}+1)$

$$\lim \frac{s(t)}{brE} = \frac{5}{2} \lim_{t \to \infty} \frac{\int_{-\infty}^{\infty} \frac{f(stH)}{fE}}{\int_{-\infty}^{\infty} \frac{f(stH)}{fE}}$$

$$= \frac{5}{2} \lim_{t \to \infty} \frac{\int_{-\infty}^{\infty} \frac{f(stH)}{fE}}{\int_{-\infty}^{\infty} \frac{f(stH)}{fE}} = \frac{5}{2} (r_{5} - 1)$$

수학 영역(미적분)

3


L 71371: atlan

27. 상수 a(a>1)과 실수 t(t>0)에 대하여 곡선 $y=a^x$ 위의 점 $A(t, a^t)$ 에서의 접선을 l이라 하자. 점 A를 지나고 직선 l에 수직인 직선이 x축과 만나는 점을 B, y축과 만나는 점을 C라 하자. $\frac{AC}{AB}$ 의 값이 t=1에서 최대일 때, a의 값은?

[3점] (1) 523/2 1127 : (- that

 $2 l: y = -\frac{1}{a^{t} \ln a} (x - t) + c^{t}$

- 3個別也... 在2 子间 3篇 (时间到)
- 5岁 公里 (公子日 월 기울기)

$$\frac{3}{4}$$
 $\frac{4}{5}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

f(1)=0 cl/ lna=1,

28. 함수 f(x)가

$$f(x) = \begin{cases} (x-a-2)^2 e^x & (x \ge a) \\ e^{2a}(x-a) + 4e^a & (x < a) \end{cases}$$

일 때, 실수 t에 대한여 f(x)=t를 만족시키는 x의 최솟값을 g(t)라 하자. f(g(t))=t \rightarrow g(t)

함수 g(t)가 t=12에서만 불연속일 때, $\frac{g'(f(a+2))}{g'(f(a+6))}$ 의 값은? (단, a는 상수이다.) [4점] (3) 2u포역 - 원갈 \Rightarrow (은 $^{\alpha}$ = 3)

 $3 12e^4 / 4 8e^6$ ② $9e^4$ ① $6e^4$ N 22 227.

⑤ $10e^6$ Sub 0/22/19 x=0.01/4/ 기회 0 핀만가능

31 GENZ 254, a-22 32 222 2 (303 Il/Silve Letter

g(fca+2)) = g(0) = 9135 43914! 7/3/9/95/123 (-20)

a+2

$$g(f(c+6)) = g(le^{c+6}) = \frac{1}{f(a+6)}$$

$$old t-12 yet$$

$$def(a+6)$$

 $f(w) = (x-a-2)(x-a)e^{x}$ $f(a+6) = 24e^{a+6}$

6) 941 6 $e^{-20} \times 24e^{a+6} = \frac{24}{3}.e^{6}$

수학 영역(미적분)

이 고객은 생각 구하기 불가능... 7 49 3201421- 69 AUS92

(1) YE 98 9292 $f(x)=x^2-2x+\frac{2x}{1+x^2}$ f(x)=0 f(x)=0

29. 함수 $f(x) = \frac{1}{3}x^3 - x^2 + \ln(1+x^2) + a$ (a)는 상수)와

두 양수 b, c에 대하여 함수

 $g(x) = \begin{cases} f(x) & (x \ge b) \\ -f(x-c) & (x < b) \end{cases}$

(3) 는 실수 전체의 집합에서 미분가능하다. $a+b+c=p+q \ln 2$ 일 때, 30(p+q)의 값을 구하시오. (단, p, q는 유리수이고, ln 2는 무리수이다.) [4점]

A 224/221-

 $-\frac{2}{3}+\ln 2+\alpha_{-}$

-1) 2224 306

द्वा १९३१ ०९ 30 是别人…!

 $f'(6) \ge 0$, $-f'(5-c) \le 0$. 2441 30 24?

f(b) = f(b-c) = 0

=> 6=1, c=1 13/20 0 0/B3 $a = \frac{1}{3} - \frac{\ln 2}{3}$

(C) 2712

70-15= | 55

30. 함수 $y = \frac{\sqrt{x}}{10}$ 의 그래프와 함수 $y = \tan x$ 의 그래프가

만나는 모든 점의 x좌표를 작은 수부터 크기순으로 나열할 때,

 $\frac{1}{\pi^2} \times \lim_{n \to \infty} a_n^3 \tan^2 \left(a_{n+1} - a_n \right)$

의 값을 구하시오. [4점]

an 2294-

MSULT GENZ OIK SYSTE 2-(HA) 72 CCU 123 下=103229 2=1003日 3, 2272

ान देशा राष्ट्र प्र

(3) (65) 704

 $(n-2)\pi < \Omega_n < (n-\frac{3}{2})\pi \quad (n\geq 2)$

 $\lim \frac{\alpha_n}{n} = \pi$

(5) 4 254

T2 X lim an X (tem an an an)2 (
1 + tem an ten an)2

 $= \frac{1}{12} \times \lim_{n \to \infty} \left\{ \frac{\int_{-\infty}^{\infty} \frac{da_{n}}{da_{n}} - \int_{-\infty}^{\infty} \frac{da_{n}}{da_{n}}}{1 + \int_{-\infty}^{\infty} \frac{da_{n}}{da_{n}}} \right\} \left\{ \int_{-\infty}^{\infty} \frac{da_{n}a_{n}}{da_{n}} + \int_{-\infty}^{\infty} \frac{da_{n}a_{n}}{da_{n}} \right\} \left\{ \int_{-\infty}^{\infty} \frac{da_{n}a_{n}}{da_{n}} + \int_{$

= 1 x lim (ay) . n3. 100. (tanti - tan)2

- * 확인 사항 ⇒ 100 ⊼ ×
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오. ㅋ 100 元 X (元·2元
- 이어서, **'선택과목(기하)**」문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.

제 2 교시

수학 영역(기하)

5지선다형

23. 두 벡터 $\stackrel{\rightarrow}{a}$ 와 $\stackrel{\rightarrow}{b}$ 에 대하여

$$\overrightarrow{a} + 3(\overrightarrow{a} - \overrightarrow{b}) = \overrightarrow{ka} - 3\overrightarrow{b}$$

이다. 실수 k의 값은? (단, $\overrightarrow{a} \neq \overrightarrow{0}$, $\overrightarrow{b} \neq \overrightarrow{0}$) [2점]

- ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

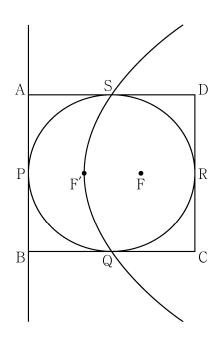
24. 타원 $\frac{x^2}{18} + \frac{y^2}{b^2} = 1$ 위의 점 $(3, \sqrt{5})$ 에서의 접선의

y 절편은? (단, b는 양수이다.) [3점]

① $\frac{3}{2}\sqrt{5}$ ② $2\sqrt{5}$ ③ $\frac{5}{2}\sqrt{5}$ ④ $3\sqrt{5}$ ⑤ $\frac{7}{2}\sqrt{5}$

25. 좌표평면에서 두 벡터 $\overrightarrow{a} = (-3, 3), \ \overrightarrow{b} = (1, -1)$ 에 대하여 벡터 \overrightarrow{p} 가

$$|\overrightarrow{p} - \overrightarrow{a}| = |\overrightarrow{b}|$$


를 만족시킬 때, $|\stackrel{
ightarrow}{p}-\stackrel{
ightarrow}{b}|$ 의 최솟값은? [3점]

- ① $\frac{3}{2}\sqrt{2}$ ② $2\sqrt{2}$ ③ $\frac{5}{2}\sqrt{2}$ ④ $3\sqrt{2}$ ⑤ $\frac{7}{2}\sqrt{2}$
- **26.** 쌍곡선 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ 의 한 초점 F(c, 0)(c > 0)을 지나고 y축에 평행한 직선이 쌍곡선과 만나는 두 점을 각각 P, Q라 하자. 쌍곡선의 한 점근선의 방정식이 y=x이고 $\overline{PQ}=8$ 일 때, $a^2 + b^2 + c^2$ 의 값은? (단, a와 b는 양수이다.) [3점]
 - ① 56
- 2 60 3 64
 - **4** 68
- **⑤** 72

수학 영역(기하)

3

27. 그림과 같이 직사각형 ABCD의 네 변의 중점 P, Q, R, S를 꼭짓점으로 하는 타원의 두 초점을 F, F'이라 하자. 점 F를 초점, 직선 AB를 준선으로 하는 포물선이 세 점 F', Q, S를 지난다. 직사각형 ABCD의 넓이가 $32\sqrt{2}$ 일 때, 선분 FF'의 길이는? [3점]

① $\frac{7}{6}\sqrt{3}$ ② $\frac{4}{3}\sqrt{3}$ ③ $\frac{3}{2}\sqrt{3}$ ④ $\frac{5}{3}\sqrt{3}$ ⑤ $\frac{11}{6}\sqrt{3}$

28. 좌표평면에서 두 점 A(1,0), B(1,1)에 대하여 두 점 P, Q가

$$|\overrightarrow{OP}| = 1$$
, $|\overrightarrow{BQ}| = 3$, $\overrightarrow{AP} \cdot (\overrightarrow{QA} + \overrightarrow{QP}) = 0$

을 만족시킨다. $|\overrightarrow{PQ}|$ 의 값이 최소가 되도록 하는 두 점 P, Q 에 대하여 $\overrightarrow{AP} \cdot \overrightarrow{BQ}$ 의 값은?

(단, O는 원점이고, $|\overrightarrow{AP}| > 0$ 이다.) [4점]

- ① $\frac{6}{5}$ ② $\frac{9}{5}$ ③ $\frac{12}{5}$ ④ 3 ⑤ $\frac{18}{5}$

4

수학 영역(기하)

단답형

29. 좌표평면에 곡선 $|y^2-1| = \frac{x^2}{a^2}$ 과 네 점 A(0, c+1),

B(0, -c-1), C(c, 0), D(-c, 0)이 있다. 곡선 위의 점 중 y좌표의 절댓값이 1보다 작거나 같은 모든 점 P에 대하여 $\overline{PC} + \overline{PD} = \sqrt{5}$ 이다. 곡선 위의 점 Q가 제1사분면에 있고 $\overline{AQ} = 10$ 일 때, 삼각형 ABQ의 둘레의 길이를 구하시오. (단, a와 c는 양수이다.) [4점]

30. 두 초점이 F(5,0), F'(-5,0)이고, 주축의 길이가 6인 쌍곡선이 있다. 쌍곡선 위의 $\overline{PF} < \overline{PF'}$ 인 점 P에 대하여 점 Q가

$$(|\overrightarrow{FP}|+1)\overrightarrow{F'Q} = 5\overrightarrow{QP}$$

를 만족시킨다. 점 A(-9, -3)에 대하여 $|\overrightarrow{AQ}|$ 의 최댓값을 구하시오. [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.

2025학년도 대학수학능력시험 6월 모의평가 수학 영역 정답표

고토 코모							선택 과목								
공통 과목						확률과 통계			미적분			기하			
문항 번호	정답	배점	문항 번호	정답	배점	문항 번호	정답	배점	문항 번호	정답	배점	문항 번호	정답	배점	
1	4)	2	12	3	4	23	3	2	23	2	2	23	4	2	
2	(5)	2	13	3	4	24	2	3	24	3	3	24	2	3	
3	3	3	14	4	4	25	4)	3	25	3	3	25	4	3	
4	3	3	15	2	4	26	3	3	26	2	3	26	3	3	
5	5	3	16	7	3	27	1	3	27	2	3	27	2	3	
6	1	3	17	23	3	28	1	4	28	4	4	28	3	4	
7	4	3	18	2	3	29	6	4	29	55	4	29	25	4	
8	1	3	19	16	3	30	108	4	30	25	4	30	10	4	
9	3	4	20	24	4		_	_		_	_		_		
10	5	4	21	15	4										
11	(5)	4	22	231	4										