1st 던지기

1. 201011수능(나)

각 면에 1, 1, 1, 2, 2, 3의 숫자가 하나씩 적혀있는 정육면체 모양의 상자를 던져 윗면에 적힌 수를 읽기로 한다. 이 상자를 3번 던질 때, 첫 번째와 두 번째 나온 수의 합이 4이고 세 번째 나온 수가 홀수일 확률은?

- ① $\frac{5}{27}$ ② $\frac{11}{54}$ ③ $\frac{2}{9}$
- $4 \frac{13}{54}$ $5 \frac{7}{27}$

2. 세 개의 주사위를 동시에 던질 때 나오는 눈의 수를 각각 a, b, c라 하자. 이때 세 수 a, b, c의 최대공약수가 2일 확률은?

- ① $\frac{2}{27}$ ② $\frac{17}{216}$ ③ $\frac{19}{216}$

- $4 \frac{5}{54}$ $5 \frac{25}{216}$

3. 200911수능(나)

주사위를 두 번 던질 때, 나오는 눈의 수를 차례로 m, n이라 하자. $i^m \cdot (-i)^n$ 의 값이 1이 될 확률이 $\frac{q}{n}$ 일 때, p+q의 값을 구하시오.(단, $i=\sqrt{-1}$ 이고 p, q는 서로소인 자연수이다.)

4. 경찰대

세 주사위를 동시에 던질 때, 세 주사위에 나타난 눈의 수가 2, 5, 3 또는 1, 1, 2 또는 6, 4, 2와 같이 두 주사위에 나타난 눈의 수의 합이 나머지 눈의 수와 같을 확률은?

- ① $\frac{1}{6}$ ② $\frac{2}{9}$ ③ $\frac{5}{24}$
- $4 \frac{1}{4}$ $5 \frac{5}{18}$

5. 200609평가원(가)

주머니 A에는 1부터 10까지의 숫자가 적힌 10개의 구슬이 들어 있고. 주머니 B에는 1부터 8까지의 숫자가 적힌 8개의 구슬이 들어 있다. 다음 각 경우의 확률을 비교하고자 하다

- (가) 주머니 A에서 구슬을 임의로 한 개씩 두 번 꺼낼 때. 차례로 1, 2가 적힌 구슬이 나오는 경우 (단. 꺼낸 구슬은 다시 넣지 않는다.)
- (L) 주머니 B에서 임의로 3개의 구슬을 동시에 꺼낼 때. 1, 2, 3이 적힌 구슬이 나오는 경우
- (다) 각 주머니에서 구슬을 임의로 한 개씩 꺼낼 때, 모두 1이 적힌 구슬이 나오는 경우

(7). (나). (다) 각 경우의 확률을 차례로 p, q, r라 할 때. p, q, r의 대소 관계를 옳게 나타낸 것은?(단, 모든 구슬은 크기와 모양이 같다고 한다.)

- ① p < q < r ② p < r < q ③ q
- (4) r (5) <math>r < q < p

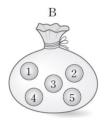
6. 200809평가원(가)

학생 9명의 혈액형을 조사하였더니 A형, B형, O형인 학생이 각각 2명, 3명, 4명이었다. 이 9명의 학생 중에서 임의로 2명을 뽑을 때, 혈액형이 같을 확률은?

- ① $\frac{13}{36}$ ② $\frac{1}{3}$ ③ $\frac{11}{36}$ ④ $\frac{5}{18}$ ⑤ $\frac{1}{4}$

7. 200911수능(나)

주머니 A와 B에는 1, 2, 3, 4, 5의 숫자가 하나씩 적혀 있는 다섯 개의 구슬이 각각 들어 있다. 철수는 주머니 A에서, 영희는 주머니 B에서 각자 구슬을 임의로 한 개씩 꺼내어 두 구슬에 적혀 이는 숫자를 확인한 후 다시 넣지 않는다. 이와 같은 시행을 반복할 때, 첫 번째 꺼낸 두 구슬에 적혀 있는 숫자가 서로 다르고. 두 번째 꺼낸 두 구슬에 적혀 있는 숫자가 같을 확률은?



- $4) \frac{3}{10}$

8. 201111수능(가)

상자 A에는 빨간 공 3개와 검은 공 5개가 들어 있고, 상자 B는 비어 있다. 상자 A에서 임의로 2개의 공을 꺼내어 빨간 공이 나오면 [실행 1]을, 빨간 공이 나오지 않으면 [실행 2]를 할 때, 상자 B에 있는 빨간 공의 개수가 1일 확률은?

[실행 1] 꺼낸 공을 상자 B에 넣는다.

[실행 2] 꺼낸 공을 상자 B에 넣고, 상자 A에서 임의로 2개의 공을 더 꺼내어 상자 B에 넣는다.

- $\bigcirc 1$

IYJ특강3_07개정 마지막수능을 위한 보완점 시리즈01 _ 수학적 확률

9. 201009평가원(나)

1부터 9까지 자연수가 하나씩 적혀 있는 9개의 공이 주머니에 들어 있다. 이 주머니에서 임의로 3개의 공을 동시에 꺼낼 때, 꺼낸 공에 적혀 있는 수

a, b, c(a < b < c)가 다음 조건을 만족시킬 확률은?

- (7) a+b+c는 홀수이다.
- (나) $a \times b \times c$ 는 3의 배수이다.
- ① $\frac{5}{14}$
- ② $\frac{8}{21}$
- $3\frac{17}{42}$

- $4) \frac{3}{7}$

10. 경찰대

POLICE ACADEMY 에는 2 개의 A, C, E를 포함하여 13 개의 문자가 있다. 이 중에서 6 개를 뽑을 때, 뽑힌 문자가 모두 다를 확률이 $\frac{q}{p}$ 이다. p-q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.)

3rd 나열하기

11. 201007교육청(나)

다섯 개의 숫자 0, 1, 2, 3, 4를 중복 사용하여 만들 수 있는 네 자리의 자연수를 $a_1a_2a_3a_4$ 라 한다. 예를 들면. 1230인 경우 $a_1=1, a_2=2, a_3=3, a_4=0$ 이다. 이와 같이 네 자리 자연수 $a_1a_2a_3a_4$ 가 $a_1 < a_2 < a_3$, $a_3 > a_4$ 를 만족할 확률은 $\frac{q}{p}$ 이다. p+q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.)

12. 5개의 숫자 1, 2, 3, 4, 5를 임의의 순서로 한 줄로 늘어놓았을 때. 첫 번째에 1 이외의 숫자가. 다섯 번째에 5 이외의 숫자가 놓여 있을 확률은?

- ② $\frac{9}{20}$
- $3\frac{11}{20}$
- $4 \frac{13}{20}$ 5 $\frac{3}{4}$

13. 201111수능(나)

한국, 중국, 일본 학생이 2명씩 있다. 이 6명이 그림과 같이 좌석번호가 지정된 6개의 좌석 중 임의로 1개씩 선택하여 앉을 때, 같은 나라의 두 학생끼리는 좌석 번호의 차가 1 또는 10이 되도록 앉게 될 확률은?

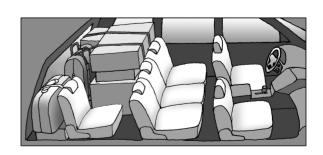
11	12	13
21	22	23

- ① $\frac{1}{20}$ ② $\frac{1}{10}$ ③ $\frac{3}{20}$

- $4 \frac{1}{5}$ $5 \frac{1}{4}$

14, 200706평가원 변형

할머니, 할아버지, 어머니, 아버지, 영희, 철수 모두 6명의 가족이 자동차를 타고 여행을 가려고 한다. 이 자동차에는 앉을 수 있는 좌석이 그림과 같이 앞줄에 2개, 가운데 줄에 3개, 뒷줄에 1개가 있다. 가족 6명이 모두 임의로 자동차의 좌석에 앉을 때, 운전석에는 아버지나 어머니가 앉고, 영희와 철수는 가운데 줄에 앉을 확률이 $\frac{a}{b}$ 이다. a+b 의 값을 구하시오.



JYJ특강3_07개정 마지막수능을 위한 보완점 시리즈01 _ 수학적 확률

15. 200606평가원 변형

남학생 2명과 여학생 2명이 함께 놀이 공원에 가서 어느놀이기구를 타려고 한다. 이 놀이기구는 그림과 같이 한 줄에 2개의 의자가 있고 모두 5줄로 구성되어 있다. 4명이 모두임의로 놀이기구의 의자에 않을 때, 남학생 1명과 여학생 1명이 짝을 지어 2명씩 같은 줄에 앉게될 확률이 $\frac{a}{b}$ 이다. a+b의 값을 구하시오.

16, 200510교육청

3 명씩 탑승한 두 대의 자동차 A, B가 어느 휴게소에서 만났다. 이들 6 명은 연료절약을 위해 좌석수가 6 개인 자동차 B에 모두 승차하려고 한다. 자동차 B의 운전자는 자리를 바꾸지 않고 나머지 5 명은 임의로 앉을 때, 처음부터 자동차 B에 탔던 2 명이 모두 처음 좌석이 아닌 다른 좌석에 앉게 될 확률은 $\frac{q}{p}$ (p, q는 서로소인 자연수)이다. 이 때, p+q의 값을 구하시오.

4th 뽑고나열

17. 200806평가원

1부터 9까지의 자연수 중에서 임의로 서로 다른 4개의 수를 선택하여 네 자리의 자연수를 만들 때. 백의 자리의 수와 십의 자리의 수의 합이 짝수가 될 확률은?

- ② $\frac{1}{2}$
- $3\frac{5}{9}$
- $4 \frac{11}{18}$ 5 $\frac{13}{18}$

18. 5 장의 카드가 들어있는 상자가 있다. 5 장의 카드 각각에는 1부터 5까지 서로 다른 자연수가 하나씩 적혀 있다. 이 상자에서 임의로 1장의 카드를 꺼내어 숫자를 확인한 후 다시 넣는 시행을 4 번 반복하여 제 i 번째에 꺼낸 카드에 적힌 숫자를 $a_i(i=1, 2, 3, 4)$ 라 하자.

 $a_1 < a_2 < a_3 < a_4$ 가 될 확률이 $\frac{q}{p}$ 일 때, p+q의 값을 구하시오. (단, p, q는 서로소인 자연수이다.)

19. 경찰대

1부터 5까지의 자연수가 적힌 5개의 공이 각각 들어 있는 두 상자 A. B가 있다. A. B에서 임의로 각각 4개의 공을 동시에 뽑아 네 자리 자연수 a, b를 만든다. 이때, a와 b를 서로 같은 자리의 수끼리 비교하였을 때, 어느 자리의 수도 서로 같지 않을 확률은?

20. 201509평가원(B) 변형

주머니에 1, 1, 1, 2, 3, 4의 숫자가 하나씩 적혀 있는 6개의 공이 들어 있다. 이 주머니에서 임의로 4개의 공을 동시에 꺼내어 임의로 일렬로 나열하고, 나열된 순서대로 공에 적혀있는 수를 a, b, c, d 라 할 때,

 $a \le b \le c \le d$ 일 확률은 $\frac{q}{p}$ 이다. p+q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.)

정답 및 해설

1. ①

첫 번째와 두 번째 나온 수의 합이 4일 경우를 순서쌍으로 나타내면

 $(1, 3,), (2, 2), (3, 1) \circ \circ$

 $(1, \ 3)$ 인 경우의 확률 : $\frac{3}{6} \times \frac{1}{6} = \frac{1}{12}$

(2, 2)인 경우의 확률 : $\frac{2}{6} \times \frac{2}{6} = \frac{1}{9}$

(3, 1)인 경우의 확률 : $\frac{1}{6} \times \frac{3}{6} = \frac{1}{12}$

따라서 첫 번째와 두 번째 나온 수의 합이 4일 확률은

$$\frac{1}{12} + \frac{1}{9} + \frac{1}{12} = \frac{10}{36} = \frac{5}{18}$$

세 번째에 홀수가 나올 확률은 $\frac{4}{6} = \frac{2}{3}$

따라서 구하는 확률은 $\frac{5}{18} \times \frac{2}{3} = \frac{5}{27}$

2. ⑤

최대공약수가 2라고 하였으므로 짝수에서 그 경우를 따져주면 된다.

짝수는 2, 4, 6 이 있고, 사용하는 짝수의 수에 따라 분류할 수 있다.

- i) 숫자를 1개만 사용하는 경우
- 이 경우는 세 번 모두 2가 나오는 경우만 해당하므로 경우의 수는 1가지이다.
- ii) 숫자를 2개 사용하는 경우

2번 사용하는 수	1번 사용하는 수
2	4
4	2
2	6
6	2
4	6
6	4

사용하는 숫자의 수를 나눠서 새는 방법은 다음과 같이 나타낼 수 있다.

총 6가지 경우가 생기고, a,b,c에 배분하는 경우는 각각 $\frac{3!}{2!} = 3 \, \text{이므로 총 } 18 \text{가지가 나온다}.$

iii) 숫자 3개를 사용하는 경우

이 경우는 2, 4, 6을 모두 사용하는 경우이므로 2, 4, 6을 a, b, c에 배분하는 경우의 수와

같으므로 총 6가지의 경우의 수가 있다.

∴ 확률=
$$\frac{1+18+6}{216}$$
= $\frac{25}{216}$

3. 23

 $i^m \cdot (-i)^n = 1$ 을 만족하는 (m, n)의 순서쌍을 구해보자.

(i) $i^m = 1$, $(-i)^n = 1$ 인 경우 : (4, 4)로 1가지

(ii) $i^m = -1$, $(-i)^n = -1$ 인 경우: (2, 2), (2, 6), (6, 2), (6, 6)로 4가지

(iii) $i^m = i$, $(-i)^n = -i$ 인 경우: (1, 1), (1, 5), (5, 1), (5, 5)로 4가지

(iv) $i^m = -i$, $(-i)^n = i$ 인 경우 : (3, 3)로 1가지

따라서 (i)~(iv)로부터 조건을 만족하는 경우의 수는 1+4+4+1=10(가지)

이므로 (구하는 확률) = $\frac{10}{36}$ = $\frac{5}{18}$ = $\frac{q}{p}$ $\therefore p+q=18+5=23$

4. ③

주사위의 한 눈의 수가 나머지 두 눈의 수의 합과 같은 경우와

각각의 순서쌍에서 순서를 바꾸는 경우를 구하여 보면

주사위의 눈	경우의 수
(2, 1, 1)	$\frac{3!}{2!} = 3(7 X)$
(3, 2, 1)	3! = 6(フトス)
(4, 2, 2)	$\frac{3!}{2!} = 3(7 X)$
(4, 3, 1)	3!=6(フトス)
(5, 3, 2)	3! = 6(7 x)
(5, 4, 1)	3! = 6(7)
(6, 3, 3)	$\frac{3!}{2!} = 3(7 \mathcal{A})$
(6, 4, 2)	3! = 6(7 - 7)
(6, 5, 1)	3! = 6(가지)
계	45

따라서 전체 경우의 수는 6^3 (가지)이므로

구하는 확률은
$$\frac{45}{6^3} = \frac{5}{24}$$

JYJ특강3_07개정 미지막수능을 위한 보완점 시리즈01 _ 수학적 확률

5. ②

(가) 주머니 A에서 처음 꺼낸 구슬의 숫자가 1일 확률 : $\frac{1}{10}$ 주머니 A에서 두 번째 꺼낸 구슬의 숫자가 2일 확률 : $\frac{1}{9}$

$$\therefore p = \frac{1}{10} \times \frac{1}{9} = \frac{1}{90}$$

(나) 주머니 B에서 구슬 3개를 동시에 꺼내는 경우의 수는 $_8C_3$ 가지이고 $1,\ 2,\ 3$ 이 적힌 구슬이 나오는 경우의 수는 1가지

$$\therefore q = \frac{1}{{}_8C_3} = \frac{1}{56}$$

(다) 주머니 A에서 꺼낸 구슬의 숫자가 1일 확률 : $\frac{1}{10}$ 주머니 B에서 꺼낸 구슬의 숫자가 1일 확률 : $\frac{1}{8}$

$$\therefore r = \frac{1}{10} \times \frac{1}{8} = \frac{1}{80}$$

따라서 각 경우의 확률의 대소 비교는 p < r < q

6. 4

학생 9명 중 2명을 뽑는 경우는 $_9C_2=36$ (가지)이고

- $\left(\begin{array}{c} \mathrm{i} \end{array}\right)$ 뽑힌 2명의 학생의 혈액형이 A형인 경우의 수 : $_{2}C_{2}=1($ 가지)
- (ii) 뽑힌 2명의 학생의 혈액형이 B형인 경우의 수 : $_3C_2=3$ (가지)
- (iii) 뽑힌 2명의 학생의 혈액형이 O형인 경우의 수 : $_4C_2=6$ (가지)
- $(i)\sim(iii)$ 에 의해 뽑힌 2명의 학생이 혈액형이 같은 경우의 수는

1+3+6=10(7 - 3)

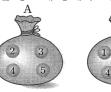
∴ (구하는 확률) = ¹⁰/₃₆ = ⁵/₁₈

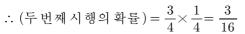
7. ①

먼저 철수는 A주머니 $1,\ 2,\ 3,\ 4,\ 5$ 중에서 아무거나 택해도 되므로 확률은 1이지. 이때, 영희는 철수가 뽑은 것과는 다른 숫자를 뽑아야 하므로 확률은 $\frac{4}{5}$

 \therefore (첫 번째 시 행의 확률) = $1 \times \frac{4}{5} = \frac{4}{5}$

확률은 $\frac{3}{4}$ 이다. 또 영희는 철수와 같은 공을 뽑아야하므로 이때의 확률은 $\frac{1}{4}$





별해

첫 번째 시행에서 철수와 영희가 같은 공을 뽑은 확률이 $\frac{5}{25} = \frac{1}{5} \, \text{이므로} \, \text{서로 다른 공을 뽑은 확률은 } 1 - \frac{1}{5} = \frac{4}{5}$ 두 번째 시행에서는 뽑은 공을 다시 넣지 않으므로 경우의 수는 16이고, 이때 같은 공을 뽑아야 하므로 같은 공은 3개 존재한다.

따라서 두 번째 시행의 확률은 $\frac{3}{16}$ 이므로

 $(구하는 확률) = \frac{4}{5} \times \frac{3}{16} = \frac{3}{20}$

8. 4

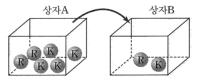
상자 A에는 빨간 공 3개와 검은 공 5개가 들어 있고, 상자 B는 비어 있을 때, 상자 A에서 임의로 2개의 공을 꺼내어 빨간 공이 나오면 [실행 1] '꺼낸 공을 상자 B에 넣는다.'를, 빨간 공이 나오지 않으면 [실행 2] '꺼낸 공을 상자 B에 넣고, 상자 A에서 임의로 2개의 공을 더 꺼내어 상자 B에 넣는다.'를 할 때, 상자 B에 있는 빨간 공의 개수가 1인 경우를 따져보자.

상자 A에서 임의로 2개의 공을 꺼낼 때 가능한 경우는 RR, RK, KK 인데, 문제의 조건에 의해 RR 혹은 RK가 나오면 [실행 1]을 하면 되므로 꺼낸 공을 상자 B에 넣어야 한다

KK 가 나오면 [실행 2]를 하면 되므로 이 두 공을 상자 B에 넣고 다시 상자 A에서 2개의 공을 더 꺼내어 상자 B에 넣어야 한다.

결국 상자 B에 있는 빨간 공의 개수가 1인 경우는 RK 가 나와서 [실행 1]을 하는 경우, KK 가 나와서 [실행 2]를 하여 RK 가 나오는 경우로 두 가지이다.

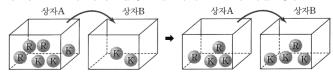
(i) RK 가 나와 [실행 1]을 하는 경우



[실행 1]

$$\therefore \frac{{}_{3}C_{1} \times {}_{5}C_{1}}{{}_{8}C_{2}} = \frac{15}{28}$$

(ii) KK 가 나와 [실행 2]를 하여 RK 가 나올 경우



[실행 2]

$$\therefore \frac{{}_{5}C_{2}}{{}_{8}C_{2}} \times \frac{{}_{3}C_{1} \times {}_{3}C_{1}}{{}_{6}C_{2}} = \frac{3}{14}$$

(i)과 (ii)에 의해

$$(구하는 확률) = \frac{15}{28} + \frac{3}{14} = \frac{21}{28} = \frac{3}{4}$$

///특강3_07개정 마지막수능을 위한 보완점 시리즈01 _ 수학적 확률

9. ①

a+b+c가 홀수가 되려면 (홀+홀+홀) 또는 (홀+짝+짝)이 되어야 해. 조건 (나)에 의해 $a\times b\times c$ 가 3의 배수이므로 $a,\ b,\ c$ 중 적어도 하나는 반드시 $3,\ 6,\ 9$ 중 하나의 값을 가져야 해.

- (1) (홀+홀+홀)인 경우
- i) 3은 포함하고 9는 포함하지 않는 경우 : $1,\ 5,\ 7$ 중 2개의 숫자를 선택해야 하므로 $_3C_2=3$
- ii) 9는 포함하고 3는 포함하지 않는 경우 : 1, 5, 7 중 2개의 숫자를 선택해야 하므로 $_3C_2=3$
- iii) 3과 9를 모두 포함하는 경우 : 1, 5, 7 중 1개의 숫자를 선택해야 하므로 $_3C_1=3$ 따라서 3+3+3=9(가지)
- (2) (홀+짝+짝)인 경우
- i) 짝수 중 6이 없는 경우(짝수가 2, 4/2, 8/4, 8인 경우) : 2, 4, 8 중 2개를 선택하고 3, 9 중 반드시 하나의 숫자를 선택해야 하므로 ${}_3C_2\times 2=6$ (가지)
- ii) 짝수 중 6이 있는 경우(짝수가 2, 6/4, 6/6, 8인 경우) : 2, 4, 8 중 1개를 선택하고 홀수 중 하나의 숫자를 선택하면 되므로

 $_3C_1 \times _5C_1 = 15$ (가지) 따라서 6+15=21(가지)

전체 경우의 수는 $_9C_3 = \frac{9 \cdot 8 \cdot 7}{3 \cdot 2 \cdot 1} = 84$ 이므로 $(구하는 확률) = \frac{9+21}{84} = \frac{30}{84} = \frac{5}{14}$

별해

(7)를 만족하는 경우의 수에서 (4), 즉 3, 6, 9를 하나도 포함하지 않는 경우의 수를 빼자.

- (i) 홀수가 3개인 경우 : 1, 3, 5, 7, 9 중에서 3개를 뽑는 경우에서, 1, 5, 7에서 3개를 뽑는 경우의 수를 빼면 ${}_5C_3 {}_3C_3 = 9$ (가지)
- (ii) 홀수가 1개인 경우 : 1, 3, 5, 7, 9 중에서 1개를 뽑고, 2, 4, 6, 8 중에서 2개를 뽑는 경우에 대하여 1, 5, 7 중에서 1개 뽑고, 2, 4, 8 중에서 2개를 뽑는 경우의 수를 빼면 $_5C_1 \times _4C_2 _3C_1 \times _3C_2 = 21$ (가지)

10. 883

13 문자 중 6 개 선택하는 경우

$$_{13}$$
C $_{6} = 1716 \, (7$ 7 $)$

- $a,\,c,\,e$ _ , _ , _ 이므로
- (i) _ , _ , _ 에 $a,\,c,\,e$ 가 하나도 없는 경우 ${}_{7}{\rm C}_{6} = 7({\it P}{\rm N}{\rm N})$
- (ii) _ , _ , _ 에 $a,\,c,\,e$ 중 1 개가 포함된 경우 ${}_6{\rm C}_1\cdot{}_7{\rm C}_5=126($ 가지)
- (iii) _ , _ , _ 에 a, c, e 중 2 개가 포함된 경우 ₃C₂·₂C₁·₂C₁·₁C₄ = 420 (가지)
- (iv) _ , _ , _ 에 $a,\,c,\,e$ 가 모두 포함된 경우 ${}_2{\rm C}_1\cdot{}_2{\rm C}_1\cdot{}_2{\rm C}_1\cdot{}_7{\rm C}_3 = 280($ 가지)
 - ∴ 서로 다를 확률= ⁷⁺¹²⁶⁺⁴²⁰⁺²⁸⁰/₁₇₁₆ = ⁸³³/₁₇₁₆
- $\therefore 1716 833 = 883$

11. 103

0이 포함된 다섯 개의 숫자를 중복하여 네 자리의 자연수를 구하는 경우는 10^3 자리에 0이 오면 안 되므로 $4\times_5 II_3 = 4\times 5^3 = 500$ (가지)

네 자리 자연수 $a_1a_2a_3a_4$ 가 $a_1 < a_2 < a_3$, $a_3 > a_4$ 를 만족해야 하므로

자연수 $a_1a_2a_3a_4$ 에 대하여 a_3 이 가장 큰 수를 사용해야 해. 따라서 a_3 은 3 또는 4이어야 한다.

(i) $a_3 = 3 일 때,$

$$a_1 = 1, \ a_2 = 2, \ a_4 \in \{0, \ 1, \ 2\}$$

- ∴ 3가지
- (ii) $a_3 = 4$ 일 때.
- $a_1 = 1 \circ \exists 0, a_2 \in \{2, 3\}, a_4 \in \{0, 1, 2, 3\}$
- $\therefore 2 \times 4 = 8(7 \times 7)$
- $a_1 = 2 \circ \exists, a_2 = 3, a_4 \in \{0, 1, 2, 3\}$
- ∴ 4가지
- (i), (ii)에 의해 주어진 조건을 만족하는 경우의 수는 3+8+4=15(가지)이므로

$$(구하는 확률) = \frac{15}{500} = \frac{3}{100} = \frac{q}{p}$$

p + q = 100 + 3 = 103

별해

중복순열을 이용하여 총 경우의 수를 계산하면 다섯 개의 숫자 $0,\ 1,\ 2,\ 3,\ 4$ 를 중복하여 4개를 선택하는 경우의 수는 $_5\Pi_4=5^4$ (가지)

이때, 0이 10^3 자리에 오는 경우의 수를 빼줘야 해. 즉, 10^3 자리를 제외한 세 자리의 수에 다섯 개의 숫자를 중복하여 선택하는 경우의 수 $_5\Pi_3=5^3$ (가지)이므로

(총 경우의 수) =
$$5^4 - 5^3 = 500$$
(가지)
(이하 동일)

JYJmathlab.com

12. ④

숫자 k가 k번째 놓이는 사건을 A_k $(k=1,\ 2,\ \cdots,\ 5)$ 라고 하면 $P(A_k)=\frac{4!}{5!}=\frac{1}{5}$ 이다.

한편,
$$P(A_1 \cap A_5) = \frac{3!}{5!} = \frac{1}{20}$$
이므로

$$P(A_1 \cup A_5) = P(A_1) + P(A_5) - P(A_1 \cap A_5) = \frac{7}{20}$$
 따라서 구하는 확률은

$$P(A_1^C \cap A_5^C) = P((A_1 \cup A_5)^C) = 1 - P(A_1 \cup A_5)$$
$$= 1 - \frac{7}{20} = \frac{13}{20}$$

13. 4

같은 나라 학생끼리 좌석번호의 차가 1 또는 10이 되도록 순서쌍을 나열하면

- (i) (11, 12), (13, 23), (21, 22)
- (ii) (11, 21), (12, 22), (13, 23)
- (iii) (11, 21), (12, 13), (22, 23)
- 이때. (i)~(iii)에서 각각의 경우의 수는

 $3! \times 2 \times 2 \times 2$ (가지)이고 전체 경우의 수는 6명을 일렬로 나열하는 경우이므로 6!(가지)

$$\therefore (구하는 확률) = \frac{(3! \times 2 \times 2 \times 2) \times 3}{6!} = \frac{1}{5}$$

14. 11

가족 6명이 모두 자동차의 좌석에 앉는 경우의 수 6! = 720 가지

운전석에 앉는 사람을 정하는 방법은 2(가지)

영희와 철수가 앉는 방법은 $_{3}P_{2}=6($ 가지)

남아있는 3명이 앉는 방법은 3! = 6(가지)

$$\therefore 2 \times 6 \times 6 = 72(7 + 7)$$

따라서 구하는 확률은 $P = \frac{72}{720} = \frac{1}{10}$

a + b = 11

15. 65

4명이 모두 놀이기구의 의자에 앉는 경우의수

 $_{6}P_{4} = 10 \times 9 \times 8 \times 7 = 5040$

남학생과 여학생이 짝을 짓는 방법의 수는 2! = 2 가지 또, 5줄에서 2줄을 택하는 방법의 수는

$$_{5}P_{2} = 5 \times 4 = 20$$
 가지

이 각각에 대하여 짝지어진 남학생과 여학생이 자리를 정하는 방법의 수는

 $2! \times 2! = 4$ 가지

구하는 기대 방법의 수는 $2 \times 20 \times 4 = 160$

따라서 구하는 확률은 $P = \frac{160}{5040} = \frac{2}{63}$

a + b = 65

16. 33

5명이 5개의 좌석에 앉는 경우의 수는 5! = 120

- (i) 자동차 B에 탔던 2명끼리 자리를 바꾸어 앉고 나머지
 3개의 좌석에 자동차 A에서 온 3명이 자리에 앉는
 경우의 수 3! = 6(가지)
- (ii) 자동차 B에 탔던 2명이 자신들이 앉지 않았던 3 개의 좌석에 앉는 경우의 수 $_3P_2$, 그 각각의 경우에 대하여 자동차 A에서 온 사람이 앉는 경우의 수는 3! = 6(가지)이므로. $_3P_2 \times 3! = 36$
- (iii) 자동차 B에 탔던 2명 중 1명은 다른 1명 자리로 가고 나머지 1명은 비었던 3자리에 앉는 경우의 수 $(4!-3!)\times 2=36$
- (i). (ii). (iii)에서 구하는 경우의 수는

6+36+36=78이므로 구하는 확률 P는

$$P = \frac{78}{120} = \frac{13}{20}$$
 : $p+q=33$

17. ①

1부터 9까지의 자연수 중 서로 다른 4개를 뽑아 네 자리 자연수를 만드는 경우의 수는 ${}_9P_4$ 가지

십의 자리와 백의 자리의 수의 합이 짝수인 경우는 다음과 같이 두 가지 경우가 있다.

- (i) 십의 자리의 수, 백의 자리의 수가 모두 짝수인 경우십의 자리의 수와 백의 자리의 수를 4개의 짝수 중 2개를 선택하고 남은 7개의 수 중 2개를 선택하여 천의 자리와일의 자리에 배치하면 되므로 $_4P_2 \times_7 P_2 ($ 가지)
- (ii) 십의 자리의 수, 백의 자리의 수가 모두 홀수인 경우십의 자리의 수와 백의 자리의 수를 5개의 홀수 중 2개를 선택하고 남은 7개의 수 중 2개를 선택하여 천의 자리와일의 자리에 배치하면 되므로 $_5P_2\times_7P_2$ (가지)

$$\therefore$$
 (구하는 확률) = $\frac{{}_4P_2 \times {}_7P_2 + {}_5P_2 \times {}_7P_2}{{}_9P_4}$
= $\frac{4 \times 3 \times 7 \times 6 + 5 \times 4 \times 7 \times 6}{9 \times 8 \times 7 \times 6} = \frac{4}{9}$

18. 126

i값이 증가함에 따라 a_i 값이 증가한다.

즉, 순서가 정해진 수열이므로 내가 구하고자 하는 경우의 수는 5장의 카드 중 4장을 뽑아주기만 하면 자동 배열되므로 $_5C_4=5$ 가지가 있다.

전체 경우의 수는 중복순열이므로 5^4 이므로

확률=
$$\frac{5}{5^4}$$
= $\frac{1}{5^3}$ = $\frac{q}{p}$

 $\therefore p + q = 126$

M 특강3_07개정 마지막수능을 위한 보완점 시리즈01 _ 수학적 확률

19. ③

a와 b를 정하는 모든 방법의 수는 각각 $_5P_4$ = 120인데 이중 a와 b의 각 자리의 수를 비교하였을 때, 어느 자리의 수도 서로 갖지 않는 경우는 a와 b의 숫자조합이 같은 경우와 같지 않은 두 가지의 경우가 있다.

우선 a = 1234일 때를 살펴보자.

(i) a와 b의 숫자조합이 같은 경우

a의 1이 위치한 자리에2가 위치한 b는 다음과같이 3개이다.

a	1	2	3	4
b	2	1	4	3
		3	4	2
		4	2	3

a의 1이 위치한 자리에 3,

4가 위치한 b도 마찬가지이므로 이 경우를 만족하는 서로 다른 b의 개수는 $3 \times 3 = 9$ 개이다.

(ii) a와 b의 숫자조합이 다른 경우

우선 b에 1이 없고 5가 포함된 경우를 살펴보자.

a 의 1이 위치한 자리에

a	1	2	3	4
b		3	4	2
	5	4	2	3

5가 위치한 b는 다음과 같이 2개이다.

a의 2가 위치한 자리에 5가 위치한 b는 다음과 같이 3개이다.

a	1	2	3	4
	2		4	3
b	3	5	4	2
	4		2	3

a의 3이 위치한 자리, a의 4가 위치한 자리에 5가 위치한 b도 만찬가지로 3개이다.

따라서 b에 1이 없고 5가 포함된 경우 조건을 만족하는 b의 개수는 $2+3\times3=11$ 이다.

b에 2가 없고 5가 포함된 경우도 모두 같으므로 이 경우를 만족하는 서로 다른 b의 개수는 $4 \times 11 = 44$ 이다.

(i), (ii)에서 a(=1234)가 결정되었을 때, 조건을 만족하는 b의 개수는 9+44=53개 이므로 구하는 확률은 $\frac{53}{120}$

[다른풀이]

a=1234일 때, a 와 어느 한 자리가 일치하는 b의 개수는 $(4\times3\times2)\times_4\mathsf{C}_1-(3\times2)\times_4\mathsf{C}_2+2\times_4\mathsf{C}_3-1\times_4\mathsf{C}_4$

=67(7)

이므로 구하는 확률은

$$\frac{1-67}{5\times4\times3\times2} = \frac{120-67}{120} = \frac{53}{120}$$

20. not 79 but 133