## 번호별 기출문제집 22번(수2)

## 수하 영여

## 성명

수험 번호
$\bigcirc$ 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.
$\bigcirc$ 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.

## HRVY-Be okay

○ 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호, 문형(홀수/짝수), 답을 정확히 표시하시오.

0 단답형 답의 숫자에 ' 0 '이 포함되면 그 ' 0 '도 답란에 반드시 표시하시오.
$\bigcirc$ 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.
$\bigcirc$ 계산은 문제지의 여백을 활용하시오.
※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오.

○ 22번
1~20쪽

두 양수 $a, b(b>3)$ 과 최고차항의 계수가 1 인 이차함수 $f(x)$ 에 대하여 함수

$$
g(x)= \begin{cases}(x+3) f(x) & (x<0) \\ (x+a) f(x-b) & (x \geq 0)\end{cases}
$$

230622
이 실수 전체의 집합에서 연속이고 다음 조건을 만족시킬 때, $g(4)$ 의 값을 구하시오.
$\lim _{x \rightarrow-3} \frac{\sqrt{|g(x)|+\{g(t)\}^{2}}-|g(t)|}{(x+3)^{2}}$ 의 값이 존재하지 않는 실수 $t$ 의 값은 -3 과 6 뿐이다.

## - MEMO

## - 쓰인 개념 정리

최고차항의 계수가 1 인 삼차함수 $f(x)$ 와 실수 전체의 집합에서 연속인 함수 $g(x)$ 가 다음 조건을 만족시킬 때, $f(4)$ 의 값을 구하시오.
(가) 모든 실수 $x$ 에 대하여

$$
f(x)=f(1)+(x-1) f^{\prime}(g(x)) \text { 이다. }
$$

(나) 함수 $g(x)$ 의 최솟값은 $\frac{5}{2}$ 이다.
(다) $f(0)=-3, f(g(1))=6$

## - MEMO

## - 쓰인 개념 정리

양수 $a$ 에 대하여 최고차항의 계수가 1 인 삼차함수 $f(x)$ 와 실수 전체의 집합에서 정의된 함수 $g(x)$ 가 다음 조건을 만족시킨다.
(가) 모든 실수 $x$ 에 대하여
$|x(x-2)| g(x)=x(x-2)(|f(x)|-a)$
이다.
(나) 함수 $g(x)$ 는 $x=0$ 과 $x=2$ 에서 미분가능하다.
$g(3 a)$ 의 값을 구하시오.

## - MEMO

## - 쓰인 개념 정리

최고차항의 계수가 1 인 삼차함수 $f(x)$ 에 대하여 함수

$$
g(x)=f(x-3) \times \lim _{h \rightarrow 0+} \frac{|f(x+h)|-|f(x-h)|}{h}
$$

가 다음 조건을 만족시킬 때, $f(5)$ 의 값을 구하시오.
(가) 함수 $g(x)$ 는 실수 전체의 집합에서 연속이다.
(나) 방정식 $g(x)=0$ 은 서로 다른 네 실근 $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ 을 갖고,

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=7 \text { 이다. }
$$

## - MEMO

## - 쓰인 개념 정리

최고차항의 계수가 1 인 삼차함수 $f(x)$ 와 실수 $t$ 가 다음 조건을 만족시킨다.
등식 $f(a)+1=f^{\prime}(a)(a-t)$ 를 만족시키는 실수 $a$ 의 값이 6 하나뿐이기 위한 필요충분조건은 $-2<t<k$ 이다.
$f(8)$ 의 값을 구하시오. (단, $k$ 는 -2 보다 큰 상수이다.)

## - MEMO

## - 쓰인 개념 정리

삼차함수 $f(x)$ 에 대하여 곡선 $y=f(x)$ 위의 점 $(0,0)$ 에서의 접선의 방정식을 $y=g(x)$ 라 할 때, 함수 $h(x)$ 를

$$
h(x)=|f(x)|+g(x)
$$

220722
라 하자. 함수 $h(x)$ 가 다음 조건을 만족시킨다.
(가) 곡선 $y=h(x)$ 위의 점 $(k, 0)(k \neq 0)$ 에서의 접선의 방정식은 $y=0$ 이다.
(나) 방정식 $h(x)=0$ 의 실근 중에서 가장 큰 값은 12 이다.
$h(3)=-\frac{9}{2}$ 일 때, $k \times\{h(6)-h(11)\}$ 의 값을 구하시오. (단, $k$ 는 상수)

## - MEMO

## - 쓰인 개념 정리

함수

$$
f(x)=x^{3}-3 p x^{2}+q
$$

가 다음 조건을 만족시키도록 하는 25 이하의 두 자연수 $p, q$ 의 모든 순서쌍 $(p, q)$ 의 개수를 구하시오.
(가) 함수 $|f(x)|$ 가 $x=a$ 에서 극대 또는 극소가 되도록 하는 모든 실수 $a$ 의 개수는 5 이다.
(나) 닫힌구간 $[-1,1]$ 에서 함수 $|f(x)|$ 의 최댓값과 닫힌구간 $[-2,2]$ 에서 함수 $|f(x)|$ 의 최댓값은 같다.

## - MEMO

## - 쓰인 개념 정리

최고차항의 계수가 1 이고 $x=3$ 에서 극댓값 8 을 갖는 삼차함수 $f(x)$ 가 있다. 실수 $t$ 에 대하여 함수 $g(x)$ 를

$$
g(x)= \begin{cases}f(x) & (x \geq t) \\ -f(x)+2 f(t) & (x<t)\end{cases}
$$

라 할 때, 방정식 $g(x)=0$ 의 서로 다른 실근의 개수를 $h(t)$ 라 하자. 함수 $h(t)$ 가 $t=a$ 에서 불연속인 $a$ 의 값이 두 개일 때, $f(8)$ 의 값을 구하시오.

## - MEMO

## - 쓰인 개념 정리

삼차함수 $f(x)$ 가 다음 조건을 만족시킨다.
(가) 방정식 $f(x)=0$ 의 서로 다른 실근의 개수는 2 이다.
(나) 방정식 $f(x-f(x))=0$ 의 서로 다른 실근의 개수는 3 이다.
220622
$f(1)=4, f^{\prime}(1)=1, f^{\prime}(0)>1$ 일 때, $f(0)=\frac{q}{p}$ 이다. $p+q$ 의 값을
구하시오. (단, $p$ 와 $q$ 는 서로소인 자연수이다.)

## - MEMO

## - 쓰인 개념 정리

최고차항의 계수가 $\frac{1}{2}$ 인 삼차함수 $f(x)$ 와 실수 $t$ 에 대하여 방정식 $f^{\prime}(x)=0$ 이 닫힌구간 $[t, t+2]$ 에서 갖는 실근의 개수를 $g(t)$ 라 할 때, 함수 $g(t)$ 는 다음 조건을 만족시킨다.

221122
(가) 모든 실수 $a$ 에 대하여 $\lim _{t \rightarrow a+} g(t)+\lim _{t \rightarrow a-} g(t) \leq 2$ 이다.
(나) $g(f(1))=g(f(4))=2, g(f(0))=1$
$f(5)$ 의 값을 구하시오.

## - MEMO

## - 쓰인 개념 정리

