지수 로그 킬러 최신 기출

ㅅㅜㅏ 영여

성명

수험 번호

\square
\bigcirc 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.
\bigcirc 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.

EZ

○ 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호, 문형(홀수/짝수), 답을 정확히 표시하시오.

0 단답형 답의 숫자에 ' 0 '이 포함되면 그 '0'도 답란에 반드시 표시하시오.
\bigcirc 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.

○ 계산은 문제지의 여백을 활용하시오.
※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오.

○ 수학1 지로함

지수 로그 킬러 최신 기출

제 2 교시
수학 영역

KILLER

1. 0 이 아닌 실수 전체의 집합에서 정의된 함수

$$
f(x)= \begin{cases}\log _{4}(-x) & (x<0) \\ 2-\log _{2} x & (x \geq 0)\end{cases}
$$

이 있다. 직선 $y=a$ 와 곡선 $y=f(x)$ 가 만나는 두 점 A, B 의 x 좌표를 각각 $x_{1}, x_{2}\left(x_{1}<x_{2}\right)$ 라 하고, 직선 $y=b$ 와 곡선 $y=f(x)$ 가 만나는 두 점 C, D 의 x 좌표를 각각
$x_{3}, x_{4}\left(x_{3}<x_{4}\right)$ 라 하자. $\left|\frac{x_{2}}{x_{1}}\right|=\frac{1}{2}$ 이고, 두 직선 AC 와 BD 가 서로 평행할 때, $\left|\frac{x_{4}}{x_{3}}\right|$ 의 값은? (단, a, b 는 $a \neq b$ 인 상수이다.) [23사관15]
2. 그림과 같이 곡선 $y=2^{x-m}+n(m>0, n>0)$ 과 직선 $y=3 x$ 가 서로 다른 두 점 A, B 에서 만날 때, 점 B 를 지나며 직선 $y=3 x$ 에 수직인 직선이 y 축과 만나는 점을 C 라 하자. 직선 CA 가 x 축과 만나는 점을 D 라 하면 점 D 는 선분 CA 를 $5: 3$ 으로 외분하는 점이다. 삼각형 ABC 의 넓이가 20 일 때, $m+n$ 의 값을 구하시오. (단, 점 A 의 x 좌표는 점 B 의 x 좌표보다 작다.) [230721]

3. 실수 t 에 대하여 두 곡선 $y=t-\log _{2} x$ 와 $y=2^{x-t}$ 이 만나는 점의 x 좌표를 $f(t)$ 라 하자.
<보기>의 각 명제에 대하여 다음 규칙에 따라 A, B, C 의 값을 정할 때, $A+B+C$ 의 값을 구하시오. (단, $A+B+C \neq 0$) [240621]

- 명제 기 참이면 $A=100$, 거짓이면 $A=0$ 이다.
- 명제 ㄴㅇㅣ 참이면 $B=10$, 거짓이면 $B=0$ 이다.
- 명제 ㄷㅇㅣ 참이면 $C=1$, 거짓이면 $C=0$ 이다.
<보 기>
ㄱ. $f(1)=1$ 이고 $f(2)=2$ 이다.
ㄴ. 실수 t 의 값이 증가하면 $f(t)$ 의 값도 증가한다.
ㄷ. 모든 양의 실수 t 에 대하여 $f(t) \geq t$ 이다.

4. 그림과 같이 1 보다 큰 두 실수 a, k 에 대하여 직선 $y=k$ 가 두 곡선 $y=2 \log _{a} x+k, y=a^{x-k}$ 과 만나는 점을 각각 A, B 라 하고, 직선 $x=k$ 가 두 곡선 $y=2 \log _{a} x+k, y=a^{x-k}$ 과 만나는 점을 각각 C, D 라 하자. $\overline{\mathrm{AB}} \times \overline{\mathrm{CD}}=85$ 이고 삼각형 CAD 의 넓이가 35 일 때, $a+k$ 의 값을 구하시오. [230321]

5. 그림과 같이 $a>1$ 인 실수 a 에 대하여 두 곡선

$$
y=a^{-2 x}-1, y=a^{x}-1
$$

이 있다. 곡선 $y=a^{-2 x}-1$ 과 직선 $y=-\sqrt{3} x$ 가 서로 다른 두 점 O, A 에서 만난다. 점 A 를 지나고 직선 OA 에 수직인 직선이 곡선 $y=a^{x}-1$ 과 제 1 사분면에서 만나는 점을 B 라 하자. $\overline{\mathrm{OA}}: \overline{\mathrm{OB}}=\sqrt{3}: \sqrt{19}$ 일 때, 선분 AB 의 길이를 구하시오. (단, O 는 원점이다.) [221021]

6. 그림과 같이 곡선 $y=2^{x}$ 위에 두 점 $\mathrm{P}\left(a, 2^{a}\right), \mathrm{Q}\left(b, 2^{b}\right)$ 이 있다. 직선 PQ 의 기울기를 m 이라 할 때, 점 P 를 지나며 기울기가 $-m$ 인 직선이 x 축, y 축과 만나는 점을 A, B 라 하고, 점 Q 를 지나며 기울기가 $-m$ 인 직선이 x 축과 만나는 점을 C 라 하자.

$$
\overline{\mathrm{AB}}=4 \overline{\mathrm{~PB}}, \overline{\mathrm{CQ}}=3 \overline{\mathrm{AB}}
$$

일 때, $90 \times(a+b)$ 의 값을 구하시오. (단, $0<a<b$) [230921]

7. $a>1$ 인 실수 a 에 대하여 직선 $y=-x+4$ 가 두 곡선

$$
y=a^{x-1}, y=\log _{a}(x-1)
$$

과 만나는 점을 각각 A, B 라 하고, 곡선 $y=a^{x-1}$ 이 y 축과 만나는 점을 C 라 하자. $\overline{\mathrm{AB}}=2 \sqrt{2}$ 일 때, 삼각형 ABC 의 넓이는 S 이다. $50 \times S$ 의 값을 구하시오. [220921]

