기출 미니 모의고사 시즌1 1회

수험 번호

\square
\bigcirc 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.
\bigcirc 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.

분수가 답일수도 있습니다

○ 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호, 문형(홀수/짝수), 답을 정확히 표시하시오.

0 단답형 답의 숫자에 ' 0 '이 포함되면 그 '0'도 답란에 반드시 표시하시오.
\bigcirc 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.

○ 계산은 문제지의 여백을 활용하시오.
※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오.

- 공통과목 1~2쪽
- 선택과목

확률과 통계
미적분
기하

출처표

공통

1. 220911
2. 181121
3. 211111
4. 21 예비11
5. 191115
6. 230620

확률과 통계
7. 220328
8. 200629

미적분

9. 210929
10. 181121

기하와 벡터
11. 190921
12. 180912

기출 미니 모의고사 시즌1 1회

5지선다형

1. 함수 $f(x)=-(x-2)^{2}+k$ 에 대하여 다음 조건을 만족시키는 자연수 n 의 개수가 2 일 때, 상수 k 의 값은?
$\sqrt{3}^{f(n)}$ 의 네제곱근 중 실수인 것을 모두 곱한 값이 -9 이다.
2. 최고차항의 계수가 1 인 삼차함수 $f(x)$ 에 대하여 실수 전체의 집합에서 연속인 함수 $g(x)$ 가 다음 조건을 만족시킨다.
(가) 모든 실수 x 에 대하여 $f(x) g(x)=x(x+3)$ 이다.
(나) $g(0)=1$
$f(1)$ 이 자연수일 때, $g(2)$ 의 최솟값은?
3. 양수 a 에 대하여 집합 $\left\{x \left\lvert\,-\frac{a}{2}<x \leq a\right., x \neq \frac{a}{2}\right\}$ 에서 정의된 함수

$$
f(x)=\tan \frac{\pi x}{a}
$$

가 있다. 그림과 같이 함수 $y=f(x)$ 의 그래프 위의 세 점
$\mathrm{O}, \mathrm{A}, \mathrm{B}$ 를 지나는 직선이 있다. 점 A 를 지나고 x 축에 평행한 직선이 함수 $y=f(x)$ 의 그래프와 만나는 점 중 A 가 아닌 점을
C 라 하자. 삼각형 ABC 가 정삼각형일 때, 삼각형 ABC 의 넓이는?
(단, O 는 원점이다.)

4. 최고차항의 계수가 1 인 삼차함수 $f(x)$ 가 다음 조건을 만족시킨다.

방정식 $f(x)=9$ 는 서로 다른 세 실근을 갖고,
이 세 실근은 크기 순서대로 등비수열을 이룬다.
$f(0)=1, f^{\prime}(2)=-2$ 일 때, $f(3)$ 의 값은?
5. 첫째항이 50 이고 공차가 -4 인 등차수열의 첫째항부터 제 n 항까지의 합을 S_{n} 이라 할 때, $\sum_{k=m}^{m+4} S_{k}$ 의 값이 최대가 되도록 하는 자연수 m 의 값은?
7. 세 명의 학생 $\mathrm{A}, \mathrm{B}, \mathrm{C}$ 에게 서로 다른 종류의 사탕 5 개를 다음 규칙에 따라 남김없이 나누어 주는 경우의 수는? (단, 사탕을 받지 못하는 학생이 있을 수 있다.)
(가) 학생 A 는 적어도 하나의 사탕을 받는다.
(나) 학생 B 가 받는 사탕의 개수는 2 이하이다.
6. 최고차항의 계수가 1 인 이차함수 $f(x)$ 에 대하여 함수

$$
g(x)=\int_{0}^{x} f(t) d t
$$

가 다음 조건을 만족시킬 때, $f(9)$ 의 값을 구하시오.
$x \geq 1$ 인 모든 실수 x 에 대하여
$g(x) \geq g(4)$ 이고 $|g(x)| \geq|g(3)|$ 이다.
8. 집합 $A=\{1,2,3,4\}$ 에 대하여 A 에서 A 로의 모든 함수 f 중에서 임의로 하나를 선택할 때, 이 함수가 다음 조건을 만족시킬 확률은 p 이다. $120 p$ 의 값을 구하시오.
(가) $f(1) \times f(2) \geq 9$
(나) 함수 f 의 치역의 원소의 개수는 3 이다.
10. 실수 전체의 집합에서 미분가능한 함수 $f(x)$ 가 다음 조건을 만족시킬 때, $f(-1)$ 의 값은?
(가) 모든 실수 x 에 대하여
$2\{f(x)\}^{2} f^{\prime}(x)=\{f(2 x+1)\}^{2} f^{\prime}(2 x+1)$ 이다.
(나) $f\left(-\frac{1}{8}\right)=1, f(6)=2$
9. 이차함수 $f(x)$ 에 대하여 함수 $g(x)=\{f(x)+2\} e^{f(x)}$ 이 다음 조건을 만족시킨다.
(가) $f(a)=6$ 인 a 에 대하여 $g(x)$ 는 $x=a$ 에서 최댓값을 갖 는다.
(나) $g(x)$ 는 $x=b, x=b+6$ 에서 최솟값을 갖는다.
방정식 $f(x)=0$ 의 서로 다른 두 실근을 α, β 라 할 때,
$(\alpha-\beta)^{2}$ 의 값을 구하시오. (단, a, b 는 실수이다.)
11. 좌표평면에서 두 점 $\mathrm{A}(-2,0), \mathrm{B}(2,0)$ 에 대하여 다음 조건을 만족시키는 직사각형의 넓이의 최댓값은?

직사각형 위를 움직이는 점 P 에 대하여 $\overline{\mathrm{PA}}+\overline{\mathrm{PB}}$ 의 값은 점 P 의 좌표가 $(0,6)$ 일 때 최대이고 $\left(\frac{5}{2}, \frac{3}{2}\right)$ 일 때 최소이다.
12. 그림과 같이 평면 α 위에 넓이가 24 인 삼각형 ABC 가 있다 평면 α 위에 있지 않은 점 P 에서 평면 α 에 내린 수선의 발을 H , 직선 AB 에 내린 수선의 발을 Q 라 하자.
점 H 가 삼각형 ABC 의 무게중심이고, $\overline{\mathrm{PH}}=4, \overline{\mathrm{AB}}=8$ 일 때, 선분 PQ 의 길이는?

