

2024학년도 수능완성 수2 선별 LV2

수학 영역

성명 수험 번호 —		
○ 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.		
○ 답안지의 필적 확인란에 다음의 문구 를 정자로 기재하시오.		
수완으로 9모 고득점 쟁취하자		
○ 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호,		
문형(홀수/짝수), 답을 정확히 표시하시오.		
○ 단답형 답의 숫자에 '0'이 포함되면 그 '0'도 답란에 반드시 표시하시오.		
○ 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오.		
배점은 2점, 3점 또는 4점입니다.		
○ 계산은 문제지의 여백을 활용하시오.		

※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오. ○ **수학2** ······ 1~뽀뽀쪽

※ 시험이 시작되기 전까지 표지를 넘기지 마시오.

수학문만중수

LEVEL 1 : 3점

LEVEL 2 : 4점

LEVEL 3 : 실전편 선별

1. 수능완성 P.47 18번 2. 수능완성 P.47 19번 3. 수능완성 P.49 26번 4. 수능완성 P.57 17번 5. 수능완성 P.57 17번 6. 수능완성 P.61 30번 6. 수능완성 P.72 23번 7. 수능완성 P.57 18번 8. 수능완성 P.57 18번 9. 수능완성 P.69 13번 10. 수능완성 P.75 34번 10. 수능완성 P.75 34번 11. 수능완성 P.74 30번 12. 수능완성 P.61 29번 13. 수능완성 P.58 21번 2024학년도 수2 수능완성 선별 LV 2

1

제 2 교시

수학 영역

홀수형

LEVEL 2	3. 두 함수 $f(x) = x^2 - x - 2$, $g(x) = x - 3x + 4$ 에 대하여 함수
1. 3보다 큰 실수 t에 대하여 직선 $y = t$ 가 두 함수 $y = \frac{3x+4}{x-2}$, $y = \frac{3x-8}{x-2}$ 의 그래프와 만나는 점을 각각 A, B라 하자. 원점 O에 대하여 삼각형 OAB의 넓이를 $f(t)$ 라 할 때, $\lim_{t \to 3^+} (t^2 - 4t + 3)f(t)$ 의 값은?	$h(x) = \begin{cases} \frac{g(x)}{f(x)} & (x \neq -1, x \neq 2) \\ a & (x = -1) \\ b & (x = 2) \end{cases}$ 가 실수 전체의 집합에서 연속일 때, 두 상수 a, b에 대하여 $a \times b$ 의 값은?
1 24 2 28 3 32 4 36 5 40	
2. 정의역이 $\{x x \ge 0\}$ 인 함수 $f(x)$ 가 다음 조건을 만족시킨다. $(7) 0 \le x < 2$ 일 때, $f(x) = x-1 $ 이다. $(4) x \ge 0$ 인 모든 실수 x에 대하여 $f(x+2) = f(x)$ 이다. 양의 실수 t에 대하여 직선 $y = \frac{x}{t}$ 가 함수 $y = f(x)$ 의 그래프와 만나는 점의 개수를 $g(t)$ 라 하자. $\lim_{x \to 4^{-}} g(t) + g(6) + \lim_{t \to 8^{+}} g(t)$ 의 값을 구하시오.	 4. 최고차항의 계수가 1인 사차함수 f(x)가 다음 조건을 만족시킨다. (가) 함수 f(x)는 x=3에서 극댓값 0을 갖는다. (나) 방정식 f(x)=0의 세 실근을 작은 것부터 차례로 나열하면 등차수열을 이룬다. 함수 f(x)의 극솟값이 -16일 때, f(0)의 값은? ① 1 ② 3 ③ 5 ④ 7 ⑤ 9

1 5

2 수학	영역 홀수형
5. 최고차항의 계수가 양수인 삼차함수 $f(x)$ 가 다음 조건을 만족시킨다.	7. 두 함수 $f(x) = 2x^3 + ax^2 + bx + 18$, $g(x) = 2x + 3$ 에 대하여 함수
 (가) 방정식 f(x)=0의 모든 실근은 0, 3이다. (나) x에 대한 방정식 f(x) -mx=0의 서로 다른 실근의 	$h(x) = \begin{cases} f(x) & (f(x) \ge g(x)) \\ g(x) & (f(x) < g(x)) \end{cases}$
개수가 3이 되도록 하는 실수 <i>m</i> 의 값은 $\frac{9}{2}$ 뿐이다.	가 다음 조건을 만족시킨다.
함수 <i>f</i> (<i>x</i>) 의 극댓값은?	 (가) 함수 h(x)가 미분가능하지 않은 x의 개수는 3이다. (나) 함수 h(x)는 x=1에서 극대, x=3에서 극소이다.
① 6 ② 7 ③ 8 ④ 9 ⑤ 10	함수 $f(x)$ 의 극댓값과 극솟값의 합은? (단, a, b는 상수이다.)
	① 31 ② 32 ③ 33 ④ 34 ⑤ 35
5. 삼차함수 $f(x) = x^3 - 3x^2 + a$ 에 대하여 함수	
$g(x) = \int_0^x f(t)dt$	
라고 하고 실수 k에 대하여 방정식 g(x)=k의 서로 다른 실근의 개수를 h(k)라 하자. h(k)의 최댓값이 2일 때, 양수 a의 최솟값은?	
① 1 ② 2 ③ 3 ④ 4 ⑤ 5	
2	5

홀수형

수학 영역

8. 삼차함수 $f(x) = x^3 + ax^2 + bx$ 가 다음 조건을 만족시킨다.

(7)
$$4\int_{-1}^{1}f(x)dx + 5\int_{-1}^{1}xf(x)dx = 0$$

(나) 함수 f(x)는 x=1에서 극솟값을 갖는다.

f(3)의 값은? (단, a, b는 상수이다.)

- ① 12 ② 14 ③ 16 ④ 18 ⑤ 20
- 10. 최고차항의 계수가 1인 삼차함수 f(x)와 함수 g(x) = x + 3이 다음 조건을 만족시킨다.
 - (가) 두 함수 y=f(x), y=g(x)의 그래프는 서로 다른 두 점에서 만난다.
 - (나) 함수 |f(x)-g(x)|는 x=1에서만 미분가능하지
 않다.
 - (다) 함수 |f(x)-g(x)|는 x=0에서 극댓값을 갖는다.

f(2)의 값은?

① 21 ② 22 ③ 23 ④ 24 ⑤ 25

9. 시각 t = 0일 때 동시에 원점을 출발하여 수직선 위를 움직이는 두 점 P, Q의 시각 $t(t \ge 0)$ 에서의 속도가 각각

 $v_1(t) = 3t^2 + t, \ v_2(t) = 2t^2 + 3t$

이다. 두 점 P, Q가 동시에 원점을 출발한 후 다시 만나는 위치 *x*가 *x* = *k*일 때, 2*k*의 값을 구하시오.

3 5

4

11. 실수 전체의 집합에서 연속인 함수 f(x)가 다음 조건을 만족시킨다.

(가) 두 상수 <i>a</i> , <i>b</i> 에 대하여
$f(x) = \begin{cases} x+3 & (-3 < x < 0) \\ x^2 + ax + b & (0 \le x \le 3) \end{cases}$
(나) 모든 실수 x에 대하여 f(x−3)=f(x+3)이다.
$\int_{-33}^{-29} f(x) dx - \int_{57}^{60} f(x) dx \mathrm{erg} \mathrm{d}x \mathrm{d}x \mathrm{erg} \mathrm{d}x \mathrm{d}x \mathrm{erg} \mathrm{d}x \mathrm{erg} \mathrm{d}x \mathrm{erg} \mathrm{d}x \mathrm{erg} \mathrm{d}x \mathrm{d}x \mathrm{erg} \mathrm{d}x \mathrm{d}x \mathrm{d}x \mathrm{erg} \mathrm{d}x $

12. 최고차항의 계수가 양수인 사차함수 f(x)에 대하여 함수
|f(x)|가 극소인 서로 다른 x의 값이 3개이고, 극솟값은 모두
0이다. 보기에서 옳은 것만을 있는 대로 고른 것은?

ㄱ. 함수 f(x) 가 극대인 서로 다른 x의 값이 2개다.
ㄴ. 함수 $f(x)$ 의 극댓값은 0보다 크거나 같다.
ㄷ. 방정식 $f(x)=0$ 의 서로 다른 실근의 개수는 3이다.

 1) ¬
 2) ⊏
 3) ¬, ∟

 ④, ⊏
 5) ¬, ∟, ⊏

홀수형

13. 함수 $f(x) = 3x^4 - 4x^3 - 12x^2 + k$ 가 다음 조건을 만족시킨다.

- (가) 곡선 *y*=*f*(*x*)가 *x*축에 접한다.
- (나) 함수 |f(x)|가 x=a에서 미분가능하지 않은 실수 a의
 개수는 2이다.

보기에서 옳은 것만을 있는 대로 고른 것은? (단, k는 상수이다.)

ㄱ. 방정식 f'(x)=0은 서로 다른 세 실근을 갖는다.

- ㄴ. 함수 *f*(*x*)의 극댓값은 0이다.
- ㄷ. 조건을 만족시키는 모든 *k*의 값의 합은 5이다.

1) П 2 L 3 Л, Е 4) L, Е 5) Л, L, Е

수고하셨습니다

- 13문제 제한시간 50분안에 모두 푸세요!
-
- 6월 22일에 LV3 학습지가 올라갑니다
- * 확인 사항