이 세상에 보장된 것은 아무 것도 없다.
 오직 기회만이 있을 뿐.

-더글라스 맥아더

There is no security on this earth, there is only opportunity.

- Douglas MacArthur

2023 THE CODE BREAKER PLUS ${ }^{+}$PACK 문제지

제4교시 교하탐구 영역（생명과학 II）

성명 수험번호 제（ ）선택

CODE \＃1．Meselson－Stahl Experiment

1．다음은 DNA 의 반보존적 복제를 증명하는 실험 과정이다．
（가）모든 DNA 가 ${ }^{14} \mathrm{~N}$ 로 표지된 대장균 $\left(\mathrm{G}_{0}\right)$ 을 ${ }^{15} \mathrm{~N}$ 가 들어 있는 배지로 옮겨 배양하면서 1 세대 $\left(\mathrm{G}_{1}\right), 2$ 세대 $\left(\mathrm{G}_{2}\right)$ ， 3 세대 $\left(\mathrm{G}_{3}\right), 4$ 세대 $\left(\mathrm{G}_{4}\right)$ 대장균의 DNA 를 추출한다．
（나）（가）에서 추출한 각 세대의 DNA 를 각각 원심 분리하여 상층，중층，하층에 존재하는 DNA 양의 상댓값을 조사한다．

이에 대한 설명으로 옳은 것만을＜보기＞에서 있는 대로 고르 시오．［3점］［150905］

＜보 기＞

ㄱ． G_{2} 에서 전체 DNA 중 ${ }^{14} \mathrm{~N}$ 가 존재하는 DNA 가닥을 갖는 이중 나선 DNA 의 비율은 $\frac{1}{2}$ 이다．

ㄴ．${ }^{15} \mathrm{~N}$ 대신 ${ }^{35} \mathrm{~S}$ 을 이용해도 반보존적 복제를 증명할 수 있다． ㄷ． G_{5} 에서 DNA 양의 비는 중층：하층 $=1: 7$ 이다．

2．다음은 DNA 복제에 대한 실험이다．
〔실험 과정〕
（가）대장균을 ${ }^{5} \mathrm{~N}$ 가 들어 있는 배지에서 배양하여 모든 DNA가 ${ }^{15} \mathrm{~N}$ 로 표지되게 한다．
（나）（가）에서 배양한 대장균 $\left(\mathrm{G}_{0}\right)$ 의 일부를 ${ }^{14} \mathrm{~N}$ 가 들어 있는 배지로 옮겨 배양하여 1 세대 대장균 $\left(\mathrm{G}_{1}\right)$ 과 2 세대 대장균 $\left(\mathrm{G}_{2}\right)$ 를 얻는다．
（다）（나）의 G_{2} 를 다시 ${ }^{15} \mathrm{~N}$ 가 들어 있는 배지로 옮겨 배양하여 3 세대 대장균 $\left(\mathrm{G}_{3}\right)$ 과 4 세대 대장균 $\left(\mathrm{G}_{4}\right)$ 를 얻는다．
（라） $\mathrm{G}_{0} \sim \mathrm{G}_{4}$ 의 DNA 를 추출하고 각각 원심 분리하여 상층， 중층，하층에 존재하는 이중 나선 DNA 의 상대량을 확인한다．

〔실험 결과〕
－ G_{0} 의 DNA 를 원심 분리한 결과는 그림과 같았다．

\circ（라）에서 A 층에는 DNA 가 없고， B 층과 C 층의 DNA 상대량의 비가 $5: 3$ 으로 나타나는 세대가 있었다．（ $\mathrm{A} \sim \mathrm{C}$ 층은 각각 상층，중층，하층 중 하나이다．）

이에 대한 설명으로 옳은 것만을＜보기＞에서 있는 대로 고르 시오．［3점］［160618］
＜보 기＞
ㄱ．（라）에서 A 층에는 DNA 가 없고， B 층과 C 층의 DNA 상대량의 비가 $3: 1$ 로 나타나는 세대가 있다．
ㄴ． G_{0} 에서 ${ }^{15} \mathrm{~N}$ 는 DNA 의 구성 성분 중 5 탄당에 존재한다．
ㄷ． B 층 이중 나선 DNA 의 단일 가닥 각각에는 모두 ${ }^{15} \mathrm{~N}$ 가 있다．

3．다음은 DNA 복제에 대한 실험이다．

〔실험 과정〕

（가）모든 DNA가 ${ }^{14} \mathrm{~N}$ 로 표지된 대장균 $\left(\mathrm{G}_{0}\right)$ 을 ${ }^{15} \mathrm{~N}$ 가 들어 있는 배지로 옮겨 배양하여 1 세대 대장균 $\left(\mathrm{G}_{1}\right), 2$ 세대 대장균 $\left(\mathrm{G}_{2}\right), 3$ 세대 대장균 $\left(\mathrm{G}_{3}\right)$ 을 얻는다．
（나）（가）의 G_{3} 을 다시 ${ }^{14} \mathrm{~N}$ 가 들어 있는 배지로 옮겨 배양하여 4 세대 대장균 $\left(\mathrm{G}_{4}\right)$ 을 얻는다．
（다）$G_{0} \sim G_{4}$ 의 $D N A$ 를 추출하고 각각 원심 분리하여 상층 $\left({ }^{14} \mathrm{~N}^{-14} \mathrm{~N}\right)$ ，중층 $\left({ }^{(4} \mathrm{N}-{ }^{-15} \mathrm{~N}\right)$ ，하층 $\left({ }^{15} \mathrm{~N}-{ }^{-15} \mathrm{~N}\right)$ 에 존재하는 이중 나선 DNA의 상대량을 확인한다．
（라）표는 각 세대별로 전체 DNA 중 특정 DNA가 차지하는 비율을 나타낸 것이다． $\mathrm{A} \sim \mathrm{C}$ 는 각각 상층 $\left({ }^{14} \mathrm{~N}^{14} \mathrm{~N}\right)$ ， 중층 $\left({ }^{14} \mathrm{~N}-{ }^{15} \mathrm{~N}\right)$ ，하층 $\left({ }^{15} \mathrm{~N}-{ }^{15} \mathrm{~N}\right)$ 중 하나이다．

구분 세대	G_{0}	G_{1}	G_{2}	G_{3}	G_{4}
A	0	1	0.5	$?$	$?$
B	0	0	(7)	$?$	$()$
C	1	0	$?$	$?$	C

이 실험에 대한 설명으로 옳은 것만을＜보기＞에서 있는 대로 고르시오．［3점］［170912］
＜보 기＞
ㄱ．（ㄱ）은 0.5 이다．
ㄴ．（ㄴㄱㄱㅘ（ㄷ）의 합은 1 이다．
ㄷ．${ }^{14} \mathrm{~N}$ 는 DNA의 구성 성분 중 5 탄당에 존재한다．

4．다음은 DNA 복제에 대한 실험이다．
－（ㄱ）과（ㄴ）은 ${ }^{14} \mathrm{~N}$ 가 들어 있는 배양액과 ${ }^{15} \mathrm{~N}$ 가 들어 있는 배양액을 순서 없이 나타낸 것이다．

（실험 과정〕

（가）모든 DNA가 ${ }^{14} \mathrm{~N}$ 와 ${ }^{15} \mathrm{~N}$ 중 하나로 표지된 대장균 $\left(\mathrm{G}_{0}\right)$ 을 （ㄱ）에서 배양하여 1 세대 대장균 $\left(\mathrm{G}_{1}\right)$ 을 얻고， G_{1} 을（ㄴ）으로 옮겨 배양하여 2 세대 대장균 $\left(\mathrm{G}_{2}\right)$ 와 3 세대 대장균 $\left(\mathrm{G}_{3}\right)$ 을 얻는다．
（나） $\mathrm{G}_{0} \sim \mathrm{G}_{3}$ 의 DNA 를 추출하고 각각 원심 분리하여 상층 $\left({ }^{14} \mathrm{~N}-{ }^{14} \mathrm{~N}\right)$ ，중층 $\left({ }^{14} \mathrm{~N}-{ }^{15} \mathrm{~N}\right)$ ，하층 $\left({ }^{15} \mathrm{~N}-{ }^{15} \mathrm{~N}\right)$ 에 존재하는 이중 나선 DNA의 상대량을 확인한다．

（실험 결과）

－그림은 G_{3} 의 DNA 를 추출하여 원심 분리 하였을 때，（a）상층，（b）중층，하층에 존재 하는 DNA의 상대량을 나타낸 것이다．

이에 대한 설명으로 옳은 것만을＜보기＞에서 있는 대로 고르 시오．（단，돌연변이는 고려하지 않는다．）［3점］［200911］
-<보 기>-

ㄱ．（a）와（B）의 DNA에서 $\frac{\text { 염기 T의 개수 }}{\text { 기 C의 개순 서로 같다．}}$
ㄴ． G_{1} 의 DNA 를 추출하여 원심 분리하였을 때 DNA는 중층 에만 존재한다．
ㄷ． G_{3} 을（ㄱ）으로 옮겨 2 회 연속 배양한 후 얻은 5 세대 대장균 $\left(\mathrm{G}_{5}\right)$ 의 DNA 를 추출하여 원심 분리하였을 때，전체 DNA 중 중층에 있는 DNA의 비율은 $\frac{1}{6}$ 이다．

5．다음은 DNA 복제에 대한 실험이다．
－（ㄱ）과（ㄴ）은 ${ }^{14} \mathrm{~N}$ 가 들어 있는 배양액과 ${ }^{15} \mathrm{~N}$ 가 들어 있는 배양액을 순서 없이 나타낸 것이다．

〔실험 과정〕
（가）모든 DNA 가 ${ }^{14} \mathrm{~N}$ 로 표지된 대장균 $\mathrm{A}\left(\mathrm{G}_{0}\right)$ 와 모든 DNA 가 ${ }^{15} \mathrm{~N}$ 로 표지된 대장균 $\mathrm{B}\left(\mathrm{G}_{0}\right)$ 를 같은 수로 준비한다． A 와 B 의 DNA는 염기 서열이 동일하다．
（나） $\mathrm{A}\left(\mathrm{G}_{0}\right)$ 와 $\mathrm{B}\left(\mathrm{G}_{0}\right)$ 를 각각（ㄱ）에서 배양하여 1 세대 대장균 $\left(\mathrm{G}_{1}\right)$ ， 2 세대 대장균 $\left(\mathrm{G}_{2}\right), 3$ 세대 대장균 $\left(\mathrm{G}_{3}\right)$ 을 얻는다．
（다） B 를 이용하여 얻은 G_{3} 을（ㄴ）으로 옮겨 배양하여 4 세대 대장균 $\left(\mathrm{G}_{4}\right)$ 과 5 세대 대장균 $\left(\mathrm{G}_{5}\right)$ 을 얻는다．
（라）A 를 이용하여 얻은 G_{3} 과 B 를 이용하여 얻은 G_{4} 를 모두 섞은 후 DNA 를 추출하고 원심 분리하여 상층 $\left({ }^{(4} \mathrm{N}-{ }^{14} \mathrm{~N}\right)$ ， 중층 $\left({ }^{14} \mathrm{~N}-{ }^{15} \mathrm{~N}\right)$ ，하층 $\left({ }^{15} \mathrm{~N}-{ }^{15} \mathrm{~N}\right)$ 에 존재하는 이중 나선 DNA 의 상대량을 확인한다．

〔실험 결과〕

－그림은（라）과정을 통해 얻은 결과를 나타낸 것이다． $\mathrm{I} \sim \mathrm{II}$ 은 각각 상층，중층， 하층 중 하나이다．

이에 대한 설명으로 옳은 것만을＜보기＞에서 있는 대로 고르 시오．（단，돌연변이는 고려하지 않는다．）（역배점 문항）［210616］

＜보 기＞

ㄱ． I 에는 B 를 이용하여 얻은 G_{4} 의 DNA가 존재한다．
ㄴ．III에는 ${ }^{15} \mathrm{~N}$ 로 표지된 DNA 가 존재한다．
ㄷ． B 를 이용하여 얻은 G 의 DNA 를 추출하여 원심 분리하였을 때 DNA 는 중층과 하층에 존재한다．
$\square<$ 메 모＞
모＞

CODE \#2. - Neurospora Experiment

1. 그림은 붉은빵곰팡이에서 아르지닌이 합성되는 과정을, 표는 최소 배지에 물질 (ㄱ) 또는 (ㄴ)의 첨가에 따른 붉은빵곰팡이 야생형과 돌연변이주 I 과 Π 의 생장 여부와 물질 (ㄷ)의 합성 여부를 나타낸 것이다. I 은 유전자 $a \sim c$ 중 어느 하나에 돌연변이가 일어나고, ㅍ는 그 나머지 유전자 중 하나에 돌연변이가 일어난 것이다. (ㄱ)~(ㄷ)은 각각 오르니틴, 시트룰린, 아르지닌 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. [3점] [171119]
<보 기>
ㄱ. ㅍ는 b 에 돌연변이가 일어난 것이다.
ㄴ. (ㄱ)을 합성하는 효소는 A이다.
ㄷ. (ㄷ)은 아르지닌이다.
2. 그림은 붉은빵곰팡이에서 아르지닌이 합성되는 과정을, 표는 최소 배지에 물질 (ㄱ)~ (ㄷ)의 첨가에 따른 붉은빵곰팡이 야생형과 돌연변이주 $\mathrm{I} \sim \mathrm{IV}$ 의 생장 여부를 나타낸 것이다. 돌연변이주 $\mathrm{I} \sim \mathrm{II}$ 은 유전자 $a \sim c$ 중 하나에만, IV 는 $a \sim c$ 중 두 개의 유전자에 돌연변이가 일어난 것이다. (ㄱ)~(ㄷ)은 각각 오르니틴, 시트룰린, 아르지닌 중 하나이다.

$$
\begin{aligned}
& \text { 유전자 } a \rightarrow \text { 효소 } \mathrm{A} \xrightarrow[\rightarrow]{\text { 전구 물질 }} \\
& \text { 유전자 } b \rightarrow \text { 효소 } \mathrm{B} \xrightarrow[\text { 오르니틴 }]{\rightarrow} \\
& \text { 유전자 } c \rightarrow \text { 효소 } \mathrm{C} \xrightarrow[\text { 시트룰린 }]{\substack{\text { 아르지닌 }}}
\end{aligned}
$$

구분	야생형	I	П	III	IV
최소 배지	+	-	-	-	-
최소 배지 + (ㄱ)	+	-	+	+	+
최소 배지 + (ㄴ)	+	-	+	-	-
최소 배지 + (ㄷ)	+	+	+	+	+
(생장함, - : 생장 못함)					

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (역배점 문항) [180913]
-<보 기>
ㄱ. 효소 B 의 기질은 (ㄱ)이다.
ㄴ. (ㄷ)은 아르지닌이다.
ㄷ. IV 는 a 와 b 모두에 돌연변이가 일어난 것이다.
3. 다음은 붉은빵곰팡이의 유전자 발현에 대한 자료이다.

○ 야생형에서 아르지닌이 합성되는 과정은 그림과 같다.

$$
\begin{array}{ccc}
\text { 유전자 } a & \text { 유전자 } b & \text { 유전자 } c \\
\text { 효소 } \mathrm{A} & \text { 효소 } \mathrm{B} & \text { 효소 } \mathrm{C} \\
\text { 전구 물질 } & \text { 오르니틴 } & \text { 시트룰린 }
\end{array} \text { 아르지닌 }
$$

- 돌연변이주 I 과 Π 는 각각 유전자 a 와 b 중 하나에만 돌연변이가 일어난 것이다.
○ 야생형, I, П를 각각 최소 배지, 최소 배지에 물질 (ㄱ)이 첨가된 배지, 최소 배지에 물질 (ㄴ)이 첨가된 배지에서 배양 하였을 때, 생장 여부와 물질 (ㄷ)의 합성 여부는 표와 같다. (ㄱ) ~ㄷ)은 오르니틴, 시트룰린, 아르지닌을 순서 없이 나타낸 것이다.

구분	최소 배지		최소 배지, (ㄱ)		최소 배지, (ㄴ)	
	생장	ㄷ) 합성	생장	(ㄷ) 합성	생장	(ᄃ) 합성
야생형	+	\bigcirc	+	\bigcirc	+	\bigcirc
I	-	\times	+	\bigcirc	-	\times
II	-	\times	+	\bigcirc	+	\bigcirc
(+: 생장함, - : 생장 못함, O : 합성됨, $\times:$ 합성 안 됨)						

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.)
[3점] [191108]
<<보 기>

[^0]4. 그림은 붉은빵곰팡이에서 아르지닌이 합성되는 과정을, 표는 최소 배지에 물질 (ㄱ)의 첨가에 따른 붉은빵곰팡이 야생형과 돌연 변이주 $\mathrm{I} \sim$ II의 생장 여부와 물질 (ㄴ)과 (ㄷ)의 합성 여부를 나타낸 것이다. I 은 유전자 $a \sim c$ 중 어느 하나에, Π 는 나머지 두 유전자 중 어느 하나에만, 피은 그 나머지 하나에 돌연변이가 일어난 것이다. (ㄱ)~(ㄷ)은 오르니틴, 시트룰린, 아르지닌을 순서 없이 나타낸 것이다.

$\text { 유전자 } a \rightarrow \text { 효소 } \mathrm{A} \xrightarrow{\text { 전구 물질 }}$	구분	최소 배지			최소 배지, (7)		
		생장	$\begin{aligned} & \text { (ㄴ) } \\ & \text { 합성 } \end{aligned}$	(ᄃ) 합성	생장	(ㄴ) 합성	$\begin{aligned} & \text { (ㄷ) } \\ & \text { 합성 } \end{aligned}$
유전자 $b \rightarrow$ 효소 $\mathrm{B} \xrightarrow{\square}$	야생형	+	\bigcirc	\bigcirc	+	\bigcirc	\bigcirc
시트룰린	I	-	\times	\bigcirc	-	\times	\bigcirc
유전자 $c \rightarrow$ 효소 $\mathrm{C} \longrightarrow$	II	-	\times	(가)	+	\bigcirc	\bigcirc
아르지닌	III	-	\times	\times	+	\bigcirc	\times

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.)
[3점] [200611]
-<보 기>
ㄱ. (가)는 ' \times '이다.
ㄴ. I 은 c 에 돌연변이가 일어난 것이다.
ㄷ. (ㄴ)은 오르니틴이다.
5. 다음은 붉은빵곰팡이의 유전자 발현에 대한 자료이다.

○ 야생형에서 아르지닌이 합성되는 과정은 그림과 같다.

○ 돌연변이주 I 은 유전자 $a \sim c$ 중 어느 하나에, Π 는 그 나머지 유전자 중 하나에만 돌연변이가 일어난 것이다.
○ 야생형, I, П를 각각 최소 배지, 최소 배지에 물질 (ㄱ)이 첨가 된 배지, 최소 배지에 물질 (ㄴ)이 첨가된 배지에서 배양하였을 때, 생장 여부와 물질 (ㄷ)의 합성 여부는 표와 같다. (ㄱ)~(ㄷ)은 오르니틴, 시트룰린, 아르지닌을 순서 없이 나타낸 것이다.

구분	최소 배지		최소 배지, (ㄱ)		최소 배지, (ㄴ)	
	생장	(ㄷ) 합성	생장	(ㄷ) 합성	생장	(ㄷ) 합성
야생형	+	\bigcirc	+	\bigcirc	+	\bigcirc
I	-	$?$	+	\bigcirc	-	\bigcirc
Π	-	\times	+	\times	-	\times
$(+:$ 생장함, $-:$ 생장 못함, $\bigcirc:$ 합성됨, $\times:$ 합성 안 됨)						

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) (역배점 문항) [210914]
<보 기>
ㄱ. (ㄴ)은 시트룰린이다.
ㄴ. (ㄴ)은 효소 B 의 기질이다.
ㄷ. I은 최소 배지에 (ㄷ)을 첨가하여 배양하였을 때 생장한다.
$\square<$ 메 모>
모>

CODE \#3. - Base Composition Calculation

1. 그림은 대장균의 DNA X 가 복제되는 과정을 모식적으로 나타낸 것이다. 그림에서 Y 는 X 가 50% 복제되었을 때의 DNA 이다. 표는 Y 의 특성을 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 지연 가닥과 선도 가닥의 복제된 길이는 동일하다.)
(역배점 문항) [151110]
<보 기>
ㄱ. X를 구성하는 뉴클레오타이드는 1600 개이다.
ㄴ. 복제 과정에서 에너지가 사용된다.
ㄷ. X 에서 $\frac{\mathrm{A}+\mathrm{T}}{\mathrm{G}+\mathrm{C}}$ 는 1.5 이다.
2. 다음은 $\mathrm{DNA} \mathrm{X}, \mathrm{DNA} \mathrm{Y}, \mathrm{mRNA} \mathrm{Z}$ 에 대한 자료이다.

- 이중 가닥 DNA X와 Y는 각각 300 개의 염기쌍으로 이루 어져 있다.
- X와 Y 중 하나로부터 Z 가 전사되었고, Z 는 300 개의 염기로 이루어져 있다.
$\circ \mathrm{X}$ 는 단일 가닥 X_{1} 과 X_{2} 로, Y 는 단일 가닥 Y_{1} 과 Y_{2} 로 이루 어져 있다.
○ X 에서 $\frac{\mathrm{A}+\mathrm{T}}{\mathrm{G}+\mathrm{C}}=\frac{3}{2}$ 이고, Y 에서 $\frac{\mathrm{A}+\mathrm{T}}{\mathrm{G}+\mathrm{C}}=\frac{3}{7}$ 이다.
$\circ \mathrm{X}_{1}$ 에서 구아닌 (G) 의 비율은 16% 이고, 피리미딘 염기의 비율은 52% 이다.
- Y_{1} 에서 사이토신(C)의 비율은 30% 이다.
- Y_{2} 에서 아데닌 (A) 의 비율은 12% 이다.
$\circ \mathrm{Z}$ 에서 G 의 비율은 16% 이다.
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오.
(역배점 문항) [171112]
<보 기>
ㄱ. Z 가 만들어질 때 주형으로 사용된 DNA 가닥은 X_{1} 이다.
ㄴ. 염기 간 수소 결합의 총개수는 X 가 Y 보다 90 개 적다.
ㄷ. X_{1} 의 G 개수 $+\mathrm{X}_{2}$ 의 A 개수 $+\mathrm{Y}_{2}$ 의 C 개수 $=252$ 개이다.

3. 다음은 어떤 세포에서 일어나는 DNA X의 복제에 대한 자료이다.

- 그림 (가)는 DNA X를, (나)는 X가 복제되는 과정의 일부를 나타낸 것이다.
- (나)에서 염기의 개수는 1600 개이고, 그중 유라실(U)의 개수는 5 개이다. (ㄱ)~ (ㄷ)은 새로 합성된 가닥이다.
- (a) (나)에서 복제되지 않은 부분의 염기 개수는 X의 염기 개수의 40% 이다.
- (나)에서 (ㄱ)의 염기 개수와 (ㄴ)의 염기 개수의 합은 (ㄷ)의 염기 개수와 같으며, (ㄷ)의 $\mathrm{G}+\mathrm{C}$ 함량은 40% 이고, (a)의 $\mathrm{G}+\mathrm{C}$ 함량은 60% 이다.

(가)
(나)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [180914]

-<보 기>

ᄀ. (가)에서 $\frac{\mathrm{A}+\mathrm{T}}{\mathrm{G}+\mathrm{C}}=\frac{13}{12}$ 이다.
ㄴ. (나)에서 타이민(T)의 개수는 435 개이다.
ㄷ. (ㄴ)이 (ㄱ)보다 먼저 합성되었다.
4. 다음은 어떤 세포에서 일어나는 DNA X의 복제에 대한 자료이다.

- 그림 (가)는 이중 가닥 DNA X를, (나)는 X가 복제되는 과정의 일부를 나타낸 것이다.
○ (나)는 (ㄱ)ㅂㅗㅗ제된 부분과 (ㄴ) 복제되지 않은 부분을 나타낸 것이며, (ㄱ)은 새로 합성된 가닥과 그에 대한 상보적인 주형 가닥을 포함한다.
- (ㄱ)에서 새로 합성된 가닥의 $\mathrm{G}+\mathrm{C}$ 함량은 40% 이다.
-(ㄴ)의 염기 개수는 X의 염기 개수의 40% 이다.
- (ㄴ)에서 $\mathrm{A}+\mathrm{T}$ 함량은 60% 이다.
- (ㄴ)에서 구아닌 (G) 의 개수는 180 개이다.

(가)
(나)
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [210913]

> - <보 기

ㄱ. X 에서 $\mathrm{G}+\mathrm{C}$ 함량은 40% 이다.
ㄴ. (ㄱ)의 염기 개수는 2700 개이다.
ㄷ. (ㄴ)에서 사이토신 (C) 개수 + 타이민 (T) 개수 $=450$ 개이다.
5. 다음은 DNA X, DNA Y, mRNA Z에 대한 자료이다.

- 이중 가닥 DNA X는 서로 상보적인 단일 가닥 X_{1} 과 X_{2} 로, 이중 가닥 DNA Y는 서로 상보적인 단일 가닥 Y_{1} 과 Y_{2} 로 구성되어 있다. X 와 Y 의 염기 개수는 같다.
○ X 와 Y 중 하나로부터 Z 가 전사되었고, 염기 개수는 X 가 Z 의 2 배이다.
- X_{1} 에서 아데닌(A)의 개수는 210 개이다.
$\circ \mathrm{X}_{2}$ 에서 $\frac{\text { 퓨린 계열 염기의 개수 }}{\text { 피리미딘 계열 염기의 개수 }}=\frac{2}{3}$ 이고, 사이토신(C)의 개수는 150 개이다.
$\circ \mathrm{Y}_{1}$ 에서 구아닌 (G) 의 개수는 90 개이다.
$\circ \mathrm{Y}_{2}$ 에서 $\frac{\text { 퓨린 계열 염기의 개수 }}{\text { 피리미딘 계열 염기의 개수 }}=\frac{9}{11}$ 이고, 타이민(T)의 개수는 아데닌(A)의 개수의 2 배이다.
$\circ \mathrm{Z}$ 에서 유라실(U)의 개수는 120 개이고, 퓨린 계열 염기의 개수는 피리미딘 계열 염기의 개수보다 120 개 많다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) (역배점 문항) [211116]

<보 기>

ㄱ. Y 에서 사이토신(C)의 개수는 240 개이다.
ㄴ. Z 가 만들어질 때 주형으로 사용된 DNA 가닥은 X_{1} 이다.
ㄷ. 염기 간 수소 결합의 총개수는 X 에서가 Y 에서보다 30 개 적다.
6. 다음은 이중 가닥 $\mathrm{DNA} x$ 와 $\mathrm{mRNA} y$ 에 대한 자료이다.
$\circ x$ 는 서로 상보적인 단일 가닥 x_{1} 과 x_{2} 로 구성되어 있다. $\circ x_{1}$ 과 x_{2} 중 하나로부터 y 가 전사되었고, 염기 개수는 x 가 y 의 2 배이다.
$\circ x$ 에서 $\frac{\mathrm{G}+\mathrm{C}}{\mathrm{A}+\mathrm{T}}=\frac{3}{2}$ 이고, y 에서 사이토신(C)의 개수는 구아닌 (G) 의 개수보다 많다.

- 표는 x_{1}, x_{2}, y 를 구성하는 염기 수를 나타낸 것이고, (ㄱ)~(ㅁ)은 A, C, G, T, U를 순서 없이 나타낸 것이다.

구분	연기 수				
	(ㄱ)	(ㄴ)	(ㄷ)	(ㄹ)	(ㅁ)
x_{1}	$?$	24	$?$	0	$?$
x_{2}	$?$	(b)	37	0	$?$
y	(a)	$?$	$?$	16	37

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) (역배점 문항) [221116]
-<보 기>
ㄱ. (a) + (b) $=16$ 이다.
ㄴ. (ㄷ)은 구아닌(G)이다.
ㄷ. x 를 구성하는 염기쌍의 개수는 120 개이다.
7. 다음은 이중 가닥 DNA X 에 대한 자료이다.

- 그림은 서로 상보적인 단일 가닥 I 과 П로 구성된 X를 나타낸 것이다. (ㄱ) ~(ㄷ)은 각각 구아닌(G), 사이토신(C), 아데닌(A), 타이민(T) 중 하나이다. (가)에는 염기 사이의 수소 결합 수를 표시하지 않았다.
- X에서 $\frac{\mathrm{G}+\mathrm{C}}{\mathrm{A}+\mathrm{T}}=\frac{2}{3}$ 이다.
- I 에서 $\frac{\mathrm{C}}{(\mathrm{C})}=\frac{3}{5}$ 이다.

- Π 에서 (ㄱ)의 개수는 20 개이고, (ㄴ)의 개수는 18 개이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [230612]

ㄱ. (C)은 구아닌 (G) 이다.
ㄴ. I에서 타이민(T)의 개수는 12 개이다.
ᄃ. X에서 뉴클레오타이드의 총개수는 160 개이다.
[메 모>——|

CODE \#4. - Lac Operon Inference

1. 다음은 결실이 일어난 돌연변이 대장균 $\mathrm{I} \sim$ II에 대한 자료이다.

○ I ~III에서 결실된 DNA 부위는 각각 젖당 오페론의 구조 유전자, 젖당 오페론의 작동 부위, 젖당 오페론을 조절하는 조절 유전자 중 하나이다.
\bigcirc 표는 야생형 대장균과 $\mathrm{I} \sim \mathrm{II}$ 을 서로 다른 배지에서 배양 할 때, 조절 유전자로부터 발현되는 억제 단백질에 대한 자료를 나타낸 것이다.

구분	억제 단백질과 젖당(젖당 유도체)의 결합		억제 단백질과 작동 부위의 결합	
	$\begin{array}{\|c\|} \hline \text { 포도ㄷㅏㅏㅇㅣ 없고 } \\ \text { 젖당이 있는 배지 } \\ \hline \end{array}$	포도당과 젖당이 없는 배지	포도ㄷㅏㅏㅇㅣ 엊겆강	$\begin{array}{\|c\|} \hline \text { 포도당과 } \\ \text { 젓당이 없는 배지 } \\ \hline \end{array}$
야생형	\bigcirc	\times	\times	\bigcirc
I	\times	\times	\times	?
II	\bigcirc	\times	?	\times
III	?	\times	?	\bigcirc
(O : 결합함, \times : 결합 못함)				

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) [3점] [160913]
<보 기>
ㄱ. 야생형 대장균은 포도당이 없고 젖당이 있는 배지에서 젖당 분해 효소를 생성한다.
ㄴ. I 은 포도당과 젖당이 없는 배지에서 젖당 분해 효소를 생성한다.
ㄷ. III은 구조 유전자가 결실된 대장균이다.
2. 다음은 야생형 대장균과 돌연변이 대장균에 대한 자료이다.

- 대장균 I 과 Π 는 각각 젖당 오페론의 프로모터가 결실된 돌연변이와 젖당 오페론을 조절하는 조절 유전자가 결실된 돌연변이 중 하나이다.
○ 표는 야생형 대장균, I, П를 포도당이 없고 젖당이 있는 배지에서 각각 배양할 때, 조절 유전자로부터 발현되는 억제 단백질과 젖당(젖당 유도체)의 결합, 젖당 오페론의 프로모터와 RNA 중합 효소의 결합에 대한 자료이다.

구분	억제 단백질과 젖당(젖당 유도체)의 결합	프로모터와 RNA 중합 효소의 결합
야생형	\bigcirc	\bigcirc
I	?	\times
П	\times	\bigcirc

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.)
[3점] [161113]
<보 기>
ㄱ. I 은 포도당이 없고 젖당이 있는 배지에서 젖당 오페론을 조절하는 억제 단백질을 생성한다.
ㄴ. ㅍ는 포도당이 없고 젖당이 있는 배지에서 젖당 분해 효소를 생성한다.
ㄷ. 젖당 분해 효소의 아미노산 서열은 프로모터에 암호화되어 있다.
3. 다음은 대장균 $\mathrm{I} \sim$ II의 젖당 오페론 조절에 대한 자료이다

- $\mathrm{I} \sim \mathrm{II}$ 은 야생형 대장균, 젖당 오페론을 조절하는 조절 유전자가 결실된 돌연변이 대장균, 젖당 오페론의 프로모터가 결실된 돌연변이 대장균을 순서 없이 나타낸 것이다.
○ 배지 (ㄱ)과 (ㄴ)은 포도당과 젖당이 없는 배지와, 포도당은 없고 젖당이 있는 배지 중 하나이다.
- I 은 (ㄱ)에서 젖당 오페론의 구조 유전자를 발현하지 않는다.
- Π 는 (ㄱ)에서 젖당 오페론의 구조 유전자를 발현한다.
- III은 (ㄴ)에서 억제 단백질을 생성하지 않는다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) [3점] [180619]
<보 기>
ㄱ. I 은 (ㄴ)에서 억제 단백질을 생성한다.
ㄴ. Π 는 (ㄴ)에서 젖당(젖당 유도체)과 결합한 억제 단백질을 갖는다.
ㄷ. II은 (ㄱ)과 (ㄴ)에서 모두 젖당 분해 효소를 생성한다.
4. 다음은 야생형 대장균과 돌연변이 대장균에 대한 자료이다.

○ 대장균 $\mathrm{I} \sim \mathrm{II}$ 은 젖당 오페론을 조절하는 조절 유전자가 결실된 돌연변이, 젖당 오페론의 프로모터가 결실된 돌연변이, 젖당 오페론의 작동 부위가 결실된 돌연변이를 순서 없이 나타낸 것이다.

- 표는 야생형 대장균과 $\mathrm{I} \sim \mathrm{II}$ 을 포도당은 없고 젖당이 있는 배지에서 각각 배양할 때의 자료이다. (ㄱ)~(ㄷ)은 억제 단백질과 젖당(젖당 유도체)의 결합, 젖당 오페론의 프로모터와 RNA 중합 효소의 결합, 억제 단백질과 작동 부위의 결합을 순서 없이 나타낸 것이다.

구분	(ㄱ)	(ㄴ)	(ㄷ)	젖당 분해 효소의 생성
야생형	\bigcirc	\times	\bigcirc	생성됨
I	O	\times	O	생성됨
II	\times	(a)	O	생성됨
III	$?$	$?$	(b)	생성 안 된

이 자료에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) [3점] [181119]
<보 기>
ㄱ. I 은 젖당 오페론을 조절하는 조절 유전자가 결실된 돌연변이이다.
ㄴ. (ㄱ)은 ‘억제 단백질과 젖당(젖당 유도체)의 결합’이다.
ㄷ. (a)와 (b)는 모두 ' \times '이다.
5. 다음은 야생형 대장균과 돌연변이 대장균에 대한 자료이다.

○ 대장균 I 과 Π 는 젖당 오페론을 조절하는 조절 유전자가 결실된 돌연변이와 젖당 오페론의 프로모터가 결실된 돌연변이를 순서 없이 나타낸 것이다.
○ 표는 야생형 대장균, I, Π 를 서로 다른 배지에서 각각 배양할 때의 자료이다. (a)~(c)는 억제 단백질과 젖당(젖당 유도체)의 결합, 억제 단백질과 작동 부위의 결합, 젖당 분해 효소의 생성을 순서 없이 나타낸 것이다.

구분	포동과 젖당이 없는 배지		포도당은 없고 젖당이 있는 배지	
	(a)	(b)	(a)	(c)
야생형	\bigcirc	\times	\times	\bigcirc
I	$?$	\times	$?$	\times
I	\times	\times	\times	(ㄱ)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.)
(역배점 문항) [190620]

<보 기>

ㄱ. I 은 젖당 오페론을 조절하는 조절 유전자가 결실된 돌연변이이다.
ㄴ. (a)는 '억제 단백질과 작동 부위의 결합’이다.
ㄷ. (ㄱ)은 ' O '이다.
6. 다음은 야생형 대장균과 돌연변이 대장균에 대한 자료이다.

- 대장균 I 과 Π 는 젖당 오페론을 조절하는 조절 유전자가 결실된 돌연변이와 젖당 오페론의 프로모터가 결실된 돌연 변이를 순서 없이 나타낸 것이다.
○ 표는 야생형 대장균과 I 과 П를 서로 다른 배지에서 각각 배양할 때의 자료이다. (가)와 (나)는 포도당은 없고 젖당이 있는 배지와 포도당과 젖당이 없는 배지를 순서 없이 나타낸 것이다. (ㄱ)과 (ㄴ)은 억제 단백질과 젖당(젖당 유도체)의 결합, 젖당 오페론의 프로모터와 RNA 중합 효소의 결합을 순서 없이 나타낸 것이다.

구분	(가)			(나)		
	(7)	(2)	젖당 분해 효소 생성	(7)	(L)	젖당 분해 효소 생성
아생형	\bigcirc	?	+	?	\times	-
I	\times	(a)	?	\times	?	+
II	?	\times	-	?	\times	?

이 자료에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) [3점] [200619]
-<보 기>
ㄱ. (a)는 'O'이다.
ㄴ. (ㄴ)은 ‘억제 단백질과 젖당(젖당 유도체)의 결합’이다.
ㄷ. I 은 (나)에서 억제 단백질을 생성한다.
7. 다음은 야생형 대장균과 돌연변이 대장균 $\mathrm{I} \sim \mathbb{I}$ 에 대한 자료이다.

- I과 Π 는 각각 젖당 오페론의 프로모터, 젖당 오페론의 작동 부위, 젖당 오페론을 조절하는 조절 유전자 중 1 개가 결실된 돌연변이이고, I은 이 중 2 개가 결실된 돌연변이이다.
- 표는 야생형 대장균과 $\mathrm{I} \sim \mathrm{II}$ 을 포도당은 없고 젖당이 있는 배지에서 각각 배양할 때의 자료이다. (ㄱ)~(ㄷ)은 억제 단백질과 젖당(젖당 유도체)의 결합, 젖당 오페론의 프로모터와 RNA 중합 효소의 결합, 억제 단백질과 작동 부위의 결합을 순서 없이 나타낸 것이다.

구분	(ㄱ)	(ㄴ)	(ㄷ)	젖당 분해 효소
야생형	\bigcirc	\bigcirc	\times	생성됨
I	\times	$?$	(a)	생성됨
II	\bigcirc	$?$	$?$	생성됨
III	$?$	$?$	$?$	생성됨

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) (역배점 문항) [200912]
<보 기>
ㄱ. (a)는 ' O '이다.
ㄴ. (ㄱ)은 ‘억제 단백질과 젖당(젖당 유도체)의 결합’이다.
ㄷ. 피은 작동 부위와 젖당 오페론을 조절하는 조절 유전자가 결실된 돌연변이이다.

| <메 모> |
| :--- | :--- |
| |

CODE \#5. - Transcription Factor Inference

1. 다음은 유전자 A 와 B 의 전사 조절에 관한 자료이다.
$\circ \mathrm{A}$ 와 B 는 각각 서로 다른 1 개의 전사 인자에 의해 전사가 촉진된다.
$\circ \mathrm{A}$ 는 단백질 α 를, B 는 단백질 β 를 암호화한다. α 와 β 중 하나만이 전사 인자이다. 이 전사 인자는 A 와 B 중 하나의 전사를 촉진한다.
$\circ \mathrm{A}$ 의 전사를 촉진하는 전사 인자는 전사 인자 결합 예상 부위 (a)~(c) 중 하나에만, B 의 전사를 촉진하는 전사 인자는 전사 인자 결합 예상 부위 (d)~(8) 중 하나에만 결합한다.

○ (a)~(g)가 모두 존재하는 경우인 (가)와 그 일부가 제거된 경우인 (나)~(마)에서 각각 전사되는 A 와 B 의 mRNA 상대량은 아래의 그림과 같다.

구분	(가)	(나)	(다)	(라)	(마)
제거된 부위	없음	© © ©	(a), (b), (d)	(c)	(e), (8)
A 와 B 의 mRNA 상대량					

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [150620]

<보 기>

ㄱ. β 는 (c)에 결합하는 A 의 전사 인자이다.
ㄴ. (마)에는 B 의 전사를 촉진하는 전사 인자가 존재한다.
ㄷ. (a)~(8) 중 (d)와 (e)가 동시에 제거되었을 때 B 의 전사가 억제된다.
2. 다음은 어떤 동물의 세포 $\mathrm{I} \sim$ II에서 유전자 w, x, y, z 의 전사 조절에 대한 자료이다.

○ w, x, y, z 의 프로모터와 전사 인자 결합 부위 $\mathrm{A}, \mathrm{B}, \mathrm{C}$ 는 그림과 같다.

$\|\mathrm{A}\|$	B		
프로모터	유전자 w		
$\|\mathrm{~A}\|$	C	프로모터	유전자 x
$\mathrm{~A} \mid$	C	프로모터	유전자 y
	B	C	프로모터
	유전자 z		

$\circ w, x, y, z$ 의 전사에 관여하는 전사 인자는 (ㄱ), (ㄴ), (ㄷ)이다. (ㄱ)은 A 에만 결합하며, (ㄴ)은 B 와 C 중 어느 하나에만 결합 하고 (ㄷ)은 그 나머지 하나에 결합한다.
○ w, x 각각의 전사는 각 유전자의 전사 인자 결합 부위 모두에 전사 인자가 결합했을 때 촉진된다. y, z 각각의 전사는 각 유전자의 전사 인자 결합 부위 중 하나에만 전사 인자가 결합 해도 촉진된다.

- I 에서 x 의 전사가 촉진된다.
- Π 에서 y 의 전사가 촉진되며, (ㄱ)~(ㄷ) 중 (ㄴ)만 발현된다.
- $\mathrm{I} \sim$ III 중 w 의 전사는 III에서만 촉진된다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [170620]

<보 기>

ㄱ. (ㄴ)은 C 에 결합한다.
ㄴ. I 에서 y 의 전사와 z 의 전사가 모두 촉진된다.
ㄷ. w, x, y, z 중 $\mathrm{I} \sim \mathrm{III}$ 모두에서 전사가 촉진되는 유전자는 2 개이다.

16 (생명과학 II)

3. 다음은 어떤 동물의 세포 $\mathrm{I} \sim$ ㅍ에서 유전자 x, y, z 의 전사 조절에 대한 자료이다.

○ x, y, z 는 각각 전사 인자 $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ 를 암호화하며, x, y, z 의 프로모터와

A	B			프로모터	유전자 x
A		C	D	프로모터	유전자 y
	B	C		프로모터	유전자 z

| B | C | | 프로모터 유전자 z |
| :--- | :--- | :--- | :--- | C, D 는 그림과 같다.

$\circ x, y, z$ 의 전사에 관여하는 전사 인자는 (ㄱ), (ㄴ), (ㄷ), (ㄹ)이다. (ㄱ)은 A 에만, (ㄴ)은 B 에만 결합하며, (ㄷ)은 C 와 D 중 어느 하나에만 결합하고, (ㄹ)은 그 나머지 하나에 결합한다.
$\circ x$ 의 전사는 전사 인자가 A 와 B 중 하나에만 결합해도 촉진 되고, z 의 전사는 전사 인자가 B 와 C 중 하나에만 결합해도 촉진된다. y 의 전사는 A 에 전사 인자가 결합하고 동시에 다른 전사 인자가 C 와 D 중 하나에만 결합해도 촉진된다.

- I 과 III에서는 각각 $\mathrm{X} \sim \mathrm{Z}$ 중 2 가지만 발현되고, Π 에서는 $\mathrm{X} \sim \mathrm{Z}$ 중 적어도 하나가 발현된다.
- Π 에서는 (ㄱ) ~(ㄹ) 중 (ㄷ)만 발현된다.

○ (ㄴ)은 I 에서 발현되지 않고, (ㄱ)은 III에서 발현되지 않는다.
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [171116]

<보 기>

ㄱ. I 에서는 (ㄷ)이 발현되지 않는다.
ㄴ. 피에서는 (ㄴ)이 발현된다.
ㄷ. (ㄹ)의 결합 부위는 D 이다.
4. 다음은 어떤 동물의 초기 발생에서 유전자 w, y 의 전사 조절에 대한 자료이다.

○ 유전자 a, b, c 는 각각 전사 인자 $\mathrm{A}, \mathrm{B}, \mathrm{C}$ 를 암호화하며, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ 는 w, y 의 전사 촉진에 관여한다.
○ 세포 (가)에서는 y 의 전사가 일어나며, 세포 (나)에서는 w 와 y 의 전사가 모두 일어나고, 세포 (다)에서는 w 의 전사는 일어나고 y 의 전사는 일어나지 않는다.
O (가)에서는 a, c 만 발현되고, (나)에서는 a, b, c 가 모두 발현 되고, (다)에서는 a, b 만 발현된다.

- 표는 (가), (나), (다)에서 a, b, c 각각의 발현을 인위적으로 억제할 때, w, y 의 전사 여부를 나타낸 것이다.

세포	(가)	(나)			(다)	
억제된 유전자	a	a	b	c	a	b
w	\times	\times	\times	\bigcirc	(ㄱ)	\times
y	\times	\bigcirc	\bigcirc	\times	\times	(ㄴ)
(○:전사됨, $\times:$ 전사 안 됨)						

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, $\mathrm{A} \sim \mathrm{C}$ 이외의 다른 전사 인자는 고려하지 않는다.)
(역배점 문항) [180620]

<보 기〉

ㄱ. (ㄱ)과 (ㄴ)은 모두 ' \times '이다.
ㄴ. w 의 전사가 일어나려면 A 와 B 가 모두 필요하다.
ㄷ. (가)에서 c 의 발현을 인위적으로 억제하면 y 의 전사가 일어나지 않는다.
5. 다음은 유전자 x 와 y 의 전사 조절에 대한 자료이다.
$\circ x$ 는 단백질 X 를, y 는 단백질 Y 를 암호화하며, x 와 y 는 각각 서로 다른 1 개의 전사 인자에 의해 전사가 촉진된다.
$\circ \mathrm{X}$ 와 Y 중 하나만이 전사 인자이고, 이 전사 인자는 x 와 y 중 하나의 전사를 촉진한다. X 는 x 의 전사를 촉진하지 않고 Y 는 y 의 전사를 촉진하지 않는다.

- x 와 y 의 프로모터와 전사 인자 결합 예상 부위 $\mathrm{A} \sim \mathrm{H}$ 는 | | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- | 프로모터 유전자 $x \mid$ 그림과 같다.

| $\mathrm{E}|\mathrm{F}| \mathrm{G}|\mathrm{H}|$ 프로모터 유전자 $y \mid$
$\circ x$ 의 전사는 전사 인자가 $\mathrm{A} \sim \mathrm{D}$ 중 (ㄱ) 연속된 두 부위에 결합하는 경우에만 촉진되고, y 의 전사는 전사 인자가 $\mathrm{E} \sim \mathrm{H}$ 중 한 부위에 결합하는 경우에만 촉진된다.
$\circ \mathrm{A} \sim \mathrm{H}$ 의 제거 여부에 따른 조건 (가)~(마)에서 전사가 촉진되는 유전자는 표와 같다.

조건	(가)	(나)	(다)	(라)	(마)
제거된 부위	없음	$\mathrm{D}, \mathrm{G}, \mathrm{H}$	$\mathrm{A}, \mathrm{B}, \mathrm{E}$	A, F	$\mathrm{C}, \mathrm{E}, \mathrm{F}$
전사가 촉진되는 유전자	x, y	없음	y	x, y	$?$

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 전사 인자 결합 예상 부위의 제거 이외의 다른 요인은 전사 인자의 작용에 영향을 주지 않는다.) [3점] [190616]

-<보 기>

ㄱ. (ㄱ)은 D 를 포함한다.
ㄴ. (다)에는 x 의 전사를 촉진하는 전사 인자가 존재한다.
ㄷ. (마)에서는 y 의 전사가 촉진된다.
6. 다음은 어떤 동물의 세포 $\mathrm{I} \sim \mathrm{V}$ 에서 유전자 w, x, y, z 의 전사 조절에 대한 자료이다.
$\circ w, x, y, z$ 는 각각 전사 인자 W , 효소 X , 효소 Y , 효소 Z 를 암호화한다. $w \sim z$ 가 전사되면 $\mathrm{W} \sim \mathrm{Z}$ 가 합성된다.

○ 유전자 (가), (나), (다), (라)의 $\left.\left|\begin{array}{|l||}\hline \mathrm{A} \\ \mathrm{B} \\ \hline\end{array}\right| \mathrm{D} \right\rvert\,$ 프로모터 유전자 (가) 프로모터와 전사 인자 결합 \begin{tabular}{|l|l|l||||l|}
\hline \& B \& C \& D

\hline 프로모터 유전자 (나)

\hline \hline

 부위 $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ 는 그림과

\hline A \& C \& \& 프로모터 유전자 (다)

\hline 같다. \& A \& \& D \& 프로모터 유전자 (라)

\hline \multicolumn{2}{|l|}{}
\end{tabular}

○ (가) $\sim($ 라 $) ㄴ ㅡ ㄴ ~ w \sim z$ 를 순서 없이 나타낸 것이고, $w \sim z$ 의 전사에 관여하는 전사 인자는 W, (ㄱ), (ㄴ), (ㄷ)이다. (ㄱ)은 A 에만, (ㄴ)은 B 에만, ㄷ은 C 에만, W 는 D 에만 결합한다.
$\circ w \sim z$ 의 전사는 전사 인자가 $\mathrm{A} \sim \mathrm{D}$ 중 하나에만 결합해도 촉진된다.
○ 표는 세포 $\mathrm{I} \sim \mathrm{V}$ 에서 $w \sim z$ 의 전사 여부를 나타낸 것이다. $\Pi \sim \mathrm{V}$ 는 I 에 W , (ㄱ), (ㄴ), (ㄷ) 중 각각 서로 다른 1 가지를 넣어준 세포이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) (역배점 문항) [190915]
<보 기>
ㄱ. (a)는 ' \times '이다.
ㄴ. 유전자 (가)는 $z^{\text {이다. }}$
ㄷ. V 는 I 에 W 를 넣어준 세포이다.

18 (생명과학 II)

7. 다음은 어떤 동물의 세포 I 에서 유전자 x, y, z 의 전사 조절에 대한 자료이다.
$\circ x, y, z$ 는 각각 전사 인자 X , 전사 인자 Y , 효소 Z 를 암호화 하며, $x \sim z$ 가 전사되면 $\mathrm{X} \sim \mathrm{Z}$ 가 합성된다.
○ 유전자 (가), (나), z 의 프로모터 와 전사 인자 결합 부위 A, B, C, D 는 그림과 같다.

A	B	C	프로모터 유전자 (가)
A	C		프로모테 유전자 (나)
	B	D	프로모테 유전자 z

0 (가)와 (나)는 각각 x 와 y 중 하나이다. $x \sim z$ 의 전사에 관여하는 전사 인자는 $\mathrm{X}, \mathrm{Y},(\mathrm{T})$, (ㄴ)이다. X 는 B 와 D 중 어느 하나에만 결합하고, Y 는 그 나머지 하나에만 결합한다. (ㄱ)은 A 와 C 중 어느 하나에만 결합하고, (ㄴ)은 그 나머지 하나에만 결합한다.
○ (가)의 전사는 전사 인자가 $\mathrm{A} \sim \mathrm{C}$ 중 적어도 두 부위에 결합 해야 촉진되고, (나)와 z 의 전사는 전사 인자가 $\mathrm{A} \sim \mathrm{D}$ 중 하나에만 결합해도 촉진된다.

- 세포 I 에서는 $X \sim Z$ 가 모두 발현 되고, (ㄱ)과 (ㄴ) 중 (ㄱ)만 발현된다.
- 세포 I 에서 $\mathrm{A} \sim \mathrm{D}$ 의 제거 여부에 따른 $x \sim z$ 의 전사 결과는 표와 같다.

제거ㄷㅚㅟㄴ	A	B	C	D
x	\bigcirc	\bigcirc	?	\bigcirc
y	\bigcirc	\times	\times	\bigcirc
z	\bigcirc	\times	\times	(a)
$(\mathrm{O}$: 전사됨, \times : 전사 안 됨)				

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 전사 인자 결합 부위의 제거 이외의 다른 요인은 전사 인자의 작용에 영향을 주지 않는다.) [3점] [211113]
<보 기>
ㄱ. (a)는 ' O '이다.
ㄴ. 유전자 (나)는 y 이다.
ㄷ. 전사 인자 Y 는 B 에 결합한다.
8. 다음은 어떤 동물의 세포 $\mathrm{I} \sim \mathrm{IV}$ 에서 유전자 w, x, y, z 의 전사 조절에 대한 자료이다.

- 유전자 a, b, c, d 는 각각 전사 인자 $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ 를 암호화하며, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ 는 w, x, y, z 의 전사 촉진에 관여한다.
$\circ w$ 의 전사는 b 가 발현되고 동시에 c 와 d 중 적어도 하나가 발현되어야 촉진된다.
○ x 의 전사는 a 와 c 가 모두 발현되어야 촉진된다.
○ y 의 전사는 a 가 발현되고 동시에 b 와 d 중 적어도 하나가 발현되어야 촉진된다.
$\circ z$ 의 전사는 b 와 c 중 적어도 하나가 발현되어야 촉진된다.
- Π 에서는 b 가 발현되지 않는다.
- 표는 $\mathrm{I} \sim \mathrm{IV}$ 에서 (가), (나), (다), z 의 전사 여부를 나타낸 것이다. (가) \sim (다)는 $w \sim y$ 를 순서 없이 나타낸 것이다.

구분	I	II	III	IV
(가)	\bigcirc	\times	\bigcirc	\bigcirc
(나)	\times	(a)	\times	\bigcirc
(다)	\times	\bigcirc	\times	\times
z	\times	\bigcirc	\bigcirc	\bigcirc
$(\bigcirc$: 전사됨, $\times:$ 전사 안 됨)				

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 조건 이외는 고려하지 않는다.) (역배점 문항)
[220911]
보 기
ㄱ. (다)는 x 이다.
ㄴ. (a)는 ' O '이다.
ㄷ. III과 IV 에서 모두 d 가 발현된다.
9. 다음은 어떤 동물의 세포 $\mathrm{I} \sim \mathrm{IV}$ 에서 유전자 w, x, y, z 의 전사 조절에 대한 자료이다.
$\circ w, x, y, z$ 는 각각 전사 인자 W 와 효소 $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ 를 암호화하며, $w \sim z$ 가 전사되면 $\mathrm{W} \sim \mathrm{Z}$ 가 합성된다.

- 유전자 (가)~(라)의 프로모터와 전사 인자 결합 부위 $\mathrm{A} \sim \mathrm{D}$ 는 그림과 같다. (가)~(라)는 $w \sim z$ 를 순서 없이 나타낸 것

A		프로모테 유전자(가)	
B		프로모터	碞전자 (ㄴ)
A	C	프로모터	유전자 (다)
\| $\mathrm{A} \mid$ \| ${ }^{\text {B }}$		프로모터	际전자 (ㅏㅏ)

$\circ w \sim z$ 의 전사에 관여하는 전사 인자는 $\mathrm{W},(7)$, (ㄴ), (ㄷ)이다. (ㄱ)은 A 에만, (ㄴ)은 B 에만, (ㄷ)은 C 에만, W 는 D 에만 결합한다. $\circ w \sim z$ 각각의 전사는 각 유전자의 전사 인자 결합 부위 모두에 전사 인자가 결합했을 때 촉진된다.
\circ 표는 세포 $\mathrm{I} \sim \mathrm{IV}$ 에서 $w \sim z$ 의 전사 여부를 나타낸 것이다. I 은 (ㄱ)~(ㄷ)이 모두 발현되는 세포이며, $\Pi \sim \mathrm{IV}$ 는 각각 (ㄱ)~(ㄷ) 중 서로 다른 1 가지만 발현되지 않는 세포이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 조건 이외는 고려하지 않는다.) [3점] [221110]
-<보 기>
ㄱ. (a)는 ' x '이다.
ㄴ. (가)는 $z^{\text {이다. }}$
ㄷ. IV 는 (ㄷ)이 발현되지 않는 세포이다.
10. 다음은 어떤 동물의 세포 $\mathrm{I} \sim$ III에서 유전자 x 의 전사 조절에 대한 자료이다.
$0 x$ 의 프로모터와 전사 인자 결합 부위 $\mathrm{A} \sim \mathrm{C}$ 는 그림과 같다.

\section*{| A | B | C | 프로모터 | 유전자 x |
| :--- | :--- | :---: | :--- | :--- |}

$\circ x$ 의 전사에 관여하는 전사 인자는 (ㄱ), (ㄴ), (ㄷ)이다. (ㄱ)은 A에만 결합하며, (ㄴ)은 B 와 C 중 어느 하나에만 결합하고, (ㄷ)은 그 나머지 하나에만 결합한다.
$0 x$ 의 전사는 전사 인자가 $\mathrm{A} \sim \mathrm{C}$ 중 적어도 두 부위에 결합했을 때 촉진된다.
○ I ~III 중 한 세포에서는 (ㄱ)~(ㄷ)이 모두 발현되고, 나머지 두 세포에서는 각각 (ㄱ)~ (ㄷ) 중 2 가지만 발현된다. Π 에서는 (ㄷ)이 발현된다.
○ $\mathrm{I} \sim$ III에서 $\mathrm{A} \sim \mathrm{C}$ 의 제거 여부에 따른 x 의 전사 결과는 표와 같다.

제거된 부위	x 의 전사		
	I	I	III
없음	\bigcirc	$О$	\bigcirc
A	O	\times	\bigcirc
B	$?$	$?$	\times
C	O	O	(a)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 제시된 조건 이외는 고려하지 않는다.) [3점] [230616]
-<보 기>
ㄱ. (a)는 ' O '이다.
ㄴ. (ㄴ)은 B 에 결합한다.
ㄷ. I 에서는 (ㄱ)~(ㄷ)이 모두 발현된다.

CODE \#6. - Genetic Recombination Tech

1. 그림 (가)는 유전자 재조합 기술을 이용하여 대장균 I 로부터 대장균 ㅍㅇㅘ II을 얻는 과정을, (나)는 (가)의 대장균 $\mathrm{I} \sim$ IIO을 섞어 항생제를 첨가하지 않은 배지와 2종류의 항생제 중 하나를 첨가한 각각의 배지에서 배양한 결과를 나타낸 것이다. I은 유전자 X의 단백질을 생산하고 유전자 A 와 B 는 각각 앰피실린 저항성 유전자와 카나마이신 저항성 유전자 중 하나이다. 동일한 대장균은 각 배지 에서 동일한 위치에 존재한다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. [3점] [150918]
<보 기>
ㄱ. ㅍ는 카나마이신과 앰피실린을 함께 첨가한 배지에서 군체를 형성한다.
ㄴ. X가 삽입된 유전자는 앰피실린 저항성 유전자이다.
ㄷ. (나)에서 (ㄱ)은 III의 군체이다.
2. 그림 (가)는 유전자 재조합 기술을 이용하여 대장균 I 로부터 유전자 X 의 단백질과 유전자 Y 의 단백질을 모두 생산하는 대장균 IV 를 얻는 과정을, (나)는 (가)의 대장균 $\mathrm{I} \sim \mathrm{IV}$ 를 섞어 3 종류의 항생제 중 하나를 첨가한 각각의 배지에서 배양한 결과를 나타낸 것이다. 유전자 $\mathrm{A} \sim \mathrm{C}$ 를 각각 앰피실린 저항성 유전자, 카나마이신 저항성 유전자, 테트라사이클린 저항성 유전자 중 하나이다. 동일한 대장균은 각 배지에서 동일한 위치에 존재한다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. [3점] [151118]
<보 기>
ㄱ. Y가 삽입된 위치는 카나마이신 저항성 유전자이다.
ㄴ. (나)에서 (ㄱ)은 X 의 단백질을 생산한다.
ㄷ. A는 앰피실린 저항성 유전자이다.
3. 다음은 유전자 재조합 기술에 이용되는 제한 효소와 재조합 DNA가 도입된 대장균을 선별하는 방법에 대한 자료이다.

(제한 효소)

- 표는 4 가지 제한 효소의 인식 서열과 절단 위치를 나타낸 것이다.

제한 효소	인식 서열과 절단 위치	제한 효소	인식 서열과 절단 위치
ApaI	$\begin{aligned} & 5^{\prime}-\mathrm{GGGCC} \mathrm{C}-3^{\prime} \\ & 3^{\prime}-\mathrm{C} \mathrm{CCGGG}-5^{\prime} \end{aligned}$	PspOMI	$\begin{aligned} & 5^{\prime}-\mathrm{G}: \mathrm{GGCCC}-3^{\prime} \\ & 3^{\prime}-\mathrm{CCCGG} \mathrm{G}-5^{\prime} \end{aligned}$
NgoMIV	$\begin{aligned} & 5^{\prime}-\mathrm{G} \mathrm{CCGGC}-3^{\prime} \\ & 3^{\prime}-\mathrm{CGGCC}: \mathrm{G}-5^{\prime} \end{aligned}$	XmaI	$\begin{aligned} & 5^{\prime}-\mathrm{C} C \mathrm{CGGG}-3^{\prime} \\ & 3^{\prime}-\mathrm{GGGCC} \mathrm{C}-5^{\prime} \end{aligned}$

- 제한 효소에 의해 형성된 DNA 조각 말단의 단일 가닥이 서로 상보적이면, DNA 조각은 연결 효소에 의해 연결된다.

〔재조합 DNA가 도입된 대장균 선별 방법〕

○ 그림은 인슐린 유전자가 재조합된 플라스미드를 갖는 대장균을 선별하는 방법을 나타낸 것이다.

- 표에 있는 각 제한 효소가 인식하는 서열은 (a)와 (b) 각각에 모두 있고 인슐린 유전자에는 없다.
- $\operatorname{lac} Z$ 유전자의 산물은 X-gal을 분해하여 대장균 군체를 흰 색에서 푸른색으로 변화시킨다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, 돌연변이는 고려하지 않는다.) [3점] [160918]
-<보 기>

ㄱ. (ㄱ)과 (ㄴ)은 모두 앰피실린에 대한 저항성이 있다.
ㄴ. (ㄴ)은 인슐린 유전자가 재조합된 플라스미드를 갖는다.
ㄷ. (ㄴ)을 얻을 수 있는 제한 효소 (가)로는 표에서 2 가지가 있다.
4. 다음은 유전자 재조합 기술에 이용되는 제한 효소와 재조합 DNA가 도입된 대장균을 선별하는 방법에 대한 자료이다.

○ 그림 (가)는 유전자 y 가 들어 있는 DNA X를, (나)는 길이가 2800 염기쌍인 플라스미드 P 를 나타낸 것이다. X 의 (a)~(e)는 각각 제한 효소 A 또는 B 의 절단 위치이고, X 를 A 로 절단할 경우 3 개의, B 로 절단할 경우 4 개의 DNA 조각이 생긴다. P 에는 A 와 B 의 절단 위치가 각각 1 개씩 있다.

(가)

(나)

- 젖당 분해 효소 유전자의 산물은 물질 G 를 분해하여 대장균 균체를 흰색에서 푸른색으로 변화시킨다.
- 그림 (다)에서 X 를 A 또는 B 로 절단하여 생성된 DNA 조각을 P 에 삽입하여 만든 재조합 플라스미드 $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ 의 염기쌍 $3850,3500,3040$ 이다.
- 그림 (라)는 $\mathrm{P}_{1} \sim \mathrm{P}_{3}$ 을 각각 숙주 대장균에 도입하여 만든 대장균 $\mathrm{I} \sim \mathrm{II}$ 을 혼합하여 서로 다른 배지에서 배양한 결과 이다. 앰피실린과 카나마이신은 항생제이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, A 로 절단한 부분과 B 로 절단한 부분은 서로 연결되지 않으며, 돌연변이는 고려하지 않는다.) [3점] [180917]

<보 기>

ㄱ. X 에서 A 의 절단 위치는 (b)와 (e)이다.
ㄴ. (ㄱ)은 Π 의 군체이다.
ㄷ. (라)의 앰피실린 첨가 배지에서 형성된 군체는 모두 y 를 가진다.
5. 그림은 유전자 재조합 기술을 이용하여 대장균 I 로부터 유전자 x 의 단백질과 유전자 y 의 단백질을 모두 생산하는 대장균 IV 를 얻는 과정을, 표는 대장균 $\mathrm{I} \sim \mathrm{IV}$ 를 섞어 서로 다른 배지에서 배양한 결과를 나타낸 것이다. 젖당 분해 효소 유전자의 산물은 물질 Z를 분해하여 대장균 군체색을 흰색에서 푸른색으로 변화시킨다. 앰피실린과 카나마이신은 항생제이고, 유전자 $a \sim c$ 는 각각 앰피실린 저항성 유전자, 카나마이신 저항성 유전자, 젖당 분해 효소 유전자 중 하나이며, (ㄱ)~ (ㄹ)은 I $\sim \mathrm{IV}$ 를 순서 없이 나타낸 것이다.

구분		(7)	(L)	(ᄃ)	(2)
Z 와 앰피실린이 첨가된 배지	군체 형성 여부	형성함	(7)	형성함	형성 못함
	군체색	푸른색	?	흰색	?
$\begin{gathered} \mathrm{Z} \text { 와 카나마이신이 } \\ \text { 첨가된 배지 } \end{gathered}$	군체 형성 여부	형성함	형성함	형성함	?
	군체색	푸른색	횐색	흰색	?

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. [3점] [210916]
<보 기>
ㄱ. (가)는 ‘형성 못함’이다.
ㄴ. b 는 카나마이신 저항성 유전자이다.
ㄷ. (ㄷ)은 x 를 가진다.
(모 $>$ ———|

CODE \＃0．Et Cetera

1．다음은 DNA （ㄱ）의 복제，전사，번역에 대한 실험이다．
－그림은 750 개의 염기쌍으로 구성된 DNA（ㄱ）을 나타낸 것이다． α, β, γ 는 각각 단백질 암호화 부위，프로모터가 포함된 부위，복제 원점이 포함된 부위 중 하나이다．표는（ㄱ）에서 돌연변이가 일어난 DNA（ㄴ）～（（）과 돌연변이 위치를 나타낸 것이다．（ㄴ）～（ㅁ）중 복제 원점에 돌연변이가 일어난 DNA는 복제되지 않으며，프로모터에 돌연변이가 일어난 DNA는 전사되지 않는다．

〔실험 과정 및 결과〕
（가） A 가 담긴 시험관 I, B 가 담긴 시험관 Π, RNA 로부터 번역을 가능하게 하는 용액이 담긴 시험관 I을 각각 5 개씩 준비한다． A 와 B 는 각각 DNA 복제를 가능하게 하는 용액과 전사를 가능하게 하는 용액 중 하나이다．
（나）（ㄱ）을 I 과 Π 에 각각 넣어 반응시킨 후 핵산의 생성 여부와， I 과 Π 의 생성물을 II에 함께 넣어 반응시킨 후 단백질 생성 여부를 확인하였다．（ㄴ）（ㅁ）도（ㄱ）을 실험한 과정과 같은 방법으로 각각 실험하여 얻은 결과는 다음과 같다．

구분		DNA				
		（7）	（2）	（ᄃ）	（2）	（1）
I	핵산 생성 여부	＋	＋	＋	－	＋
II	핵산 생성 여부	＋	＋	＋	＋	－
III	단백질 생성 여부	＋	＋	－	－	＋

이에 대한 설명으로 옳은 것만을＜보기＞에서 있는 대로 고르 시오．（역배점 문항）［161118］ ＜보 기＞
ㄱ．전사의 방향은（b）이다．
ㄴ．（가）의 I 에는 RNA 중합 효소가 들어 있다．
ㄷ．（ㄴ）을（가）의 Π 에 넣어 반응시켜 얻은 생성물을（가）의 III에 넣어 반응시키면 단백질이 생성된다．

2．다음은 대장균의 DNA 복제에 대한 실험이다．

〔실험 과정〕

（가）DNA의 모든 염기가 ${ }^{15} \mathrm{~N}$ 로 표지된 대장균을 ${ }^{14} \mathrm{~N}$ 가 들어 있는 배지에 옮겨 배양한다．
（나） 0 분 시점에 대장균을 채취하여 추출한 DNA 를 그림과 같이 일정한 길이로 절단한 후 원심 분리하고，${ }^{15} \mathrm{~N}-{ }^{15} \mathrm{~N}$ 층과 ${ }^{15} \mathrm{~N}-{ }^{14} \mathrm{~N}$ 층에서 이중 가닥 DNA 조각（a）～（e）와 （a）～（e）의 존재 여부를 조사한다．（a）～（e）은 각각（a）～（）가 복제된 DNA 조각이다．
（다） 5 분， 10 분， 15 분 각 시점에 대장균으로부터 DNA 를 추출 하여（나）를 반복한다．

〔실험 결과〕

배양 후 시점（분）	각 층에 존재하는 DNA 조각	
	${ }^{15} \mathrm{~N}-{ }^{15} \mathrm{~N}$ 층	${ }^{15} \mathrm{~N}-{ }^{14} \mathrm{~N}$ 층
0	（a），（b），（c），（d），（e）	없음
5	（a），（c），（d），（e）	（b）
10	（d），（e）	（b）
15	（d），（e）	（a）${ }^{\prime}$（（b）${ }^{\prime}$ ，（c）${ }^{\prime}$

이 자료에 대한 설명으로 옳은 것만을＜보기＞에서 있는 대로 고르시오．（단，복제 원점은 한 곳에만 존재한다．）（역배점 문항）
［170616］
＜보 기＞
ㄱ．（b）에 복제 원점이 있다．
ㄴ．복제는（ㄴ）방향으로만 일어났다．
ㄷ．배양 후 15 분 시점의（c）은 배양 후 10 분 시점이 지난 후에 합성이 완료되었다．
3. 다음은 폴리펩타이드 합성에 대한 실험이다.

[실험 과정 및 결과〕

(가) mRNA와 개시 tRNA 를 모두 제외하고, 그 밖의 번역에 필요한 모든 물질이 포함된 용액 X 를 준비한다. 개시 tRNA는 개시 코돈에 결합하여 번역을 시작하게 한다.
(나) 시험관 $\mathrm{I} \sim \mathrm{V}$ 에 각각 용액 X 와 (a) 방사성 동위 원소로 표지된 아미노산을 넣는다.
(다) (나)의 각 시험관에 mRNA와 물질 (ㄱ)~ (ㄷ)을 표와 같이 시점 t_{0} 과 t_{1} 에서 첨가한 후 시간에 따라 생성된 폴리 펩타이드에 삽입된 (a)의 총수를 측정한다. (ㄱ)~ (ㄷ)은 각각 tRNA, 리보솜 A자리에 tRNA가 결합하는 것을 차단하는 물질, mRNA 와 리보솜 소단위체의 결합을 차단하는 물질 중 하나이다.
(라) 다음은 $\mathrm{I} \sim \mathrm{V}$ 에서 얻은 결과이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고르 시오. (단, $\mathrm{I} \sim \mathrm{V}$ 에서 동일한 mRNA 를 사용하였으며, 제시된 조건 이외의 다른 조건은 동일하다.) (역배점 문항) [170918]
<보
ㄱ. tRNA의 아미노산 결합 부위는 5^{\prime} 말단에 존재한다.
ㄴ. (ㄴ)은 mRNA와 리보솜 소단위체의 결합을 차단한다.
ㄷ. V 에서 폴리펩타이드에 삽입된 (a)의 총수는 t_{0} 이후에 계속 증가한다.
4. 다음은 유전 암호를 알아내기 위한 실험의 일부이다.

(실험 과정 및 결과〕

(가) RNA 합성에 사용되는 뉴클레오타이드 중 염기가 유라실(U)과 사이토신(C)인 뉴클레오타이드만을 시험관

시험관	구성비 $(\mathrm{U}: \mathrm{C})$
I	$1: 1$
II	(7) $: 3$
III	(ㄴ):1

(나) RNA로부터 번역을 가능하게 하는 용액을 $\mathrm{I} \sim$ II에 첨가 하여 충분한 시간 동안 폴리펩타이드를 합성시킨다.
(다) (나)에서 생성된 폴리펩타이드를 구성하는 아미노산 수의 상대적인 비는 다음과 같다.

아미노산 시험관	류신	프롤린	페닐알라닌	세린
I	1	1	1	1
I	6	9	4	$?$
III	6	1	$?$	6

- 표는 유전부호의 일부를 나타낸 것이다.

아미노산	류신	프롤린	페닐알라닌	세린
코돈	$\mathrm{CUU}, \mathrm{CUC}$	$\mathrm{CCU}, \mathrm{CCC}$	$\mathrm{UUU}, \mathrm{UUC}$	$\mathrm{UCU}, \mathrm{UCC}$

(가)에서 (ㄱ) + (ㄴ)의 값을 구하시오. (단, 개시 코돈과 종결 코돈은 고려하지 않는다.) [3점] [180915]

[^1]
[^0]: ㄱ. (ㄴ)은 시트룰린이다.
 ㄴ. 효소 B 의 기질은 (ㄷ)이다.
 ㄷ. Π 는 a 에 돌연변이가 일어난 것이다.

[^1]: * 확인 사항
 - 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.

