유형 1 거듭제곱근의 뜻과 성질

출제경향 | 거듭제곱근의 뜻과 성질을 이용하는 문제가 출제된다.

출제유형잡기 | 거듭제곱근의 뜻과 성질을 이용하여 문제를 해결한다.

(1) 실수 a와 2 이상의 자연수 n에 대하여 n제곱하여 a가 되는 실수. 즉 방정식 $x^n = a$ 를 만족시키는 실수 x는 다음과 같다.

	a>0	a=0	a<0
n이 짝수	$\sqrt[n]{a} > 0, -\sqrt[n]{a} < 0$	$\sqrt[n]{a} = 0$	없다.
n이 홀수	$\sqrt[n]{a} > 0$	$\sqrt[n]{a} = 0$	$\sqrt[n]{a} < 0$

- (2) a > 0, b > 0이고 m, n이 2 이상의 자연수일 때
 - $(1)(\sqrt[n]{a})^n=a$
 - $\bigcirc \sqrt[n]{a}\sqrt[n]{b} = \sqrt[n]{ab}$

 - $(\sqrt[n]{a})^m = \sqrt[n]{a^m}$

 - ⑥ $\sqrt[np]{a^{mp}} = \sqrt[n]{a^m}$ (단, p는 자연수)

필수유형 1

| 2021학년도 대수능 6월 모의평가 |

자연수 n이 $2 \le n \le 11$ 일 때, $-n^2 + 9n - 18$ 의 n제곱근 중 에서 음의 실수가 존재하도록 하는 모든 n의 값의 합은? [3점]

- ② 33
- ③ 35

- **4** 37
- (5) 39

1) f(n)>0 & nd 学 ::) f(n)<0 & nol 并

f(n)>0 →3< n <6

for > 15 nc3, b< n<4

.. n=4

: N=7,9, N

 $\mathbf{0}$

4+7+9+11=31

22054-0001

 $\sqrt[3]{\frac{16}{16} + \sqrt[3]{2} \times \sqrt[5]{2} \times \sqrt[5]{16}}$ 의 값은? $\sqrt[3]{2}$

- \bigcirc 2
- 3 6

- (4) 8

$$\frac{2^{\frac{4}{3}}}{2^{\frac{1}{3}}} + \frac{2^{\frac{1}{3} + \frac{1}{5} + \frac{4}{5}}}{2^{\frac{1}{3}}} = 2 + 2 = 4$$

02

22054-0002

64의 네제곱근 중 실수인 것을 a, b(a > b)라 하고, -64의 세제곱근 중 실수인 것을 c라 할 때. $(a-b)^2+c$ 의 값을 구하 시오

$$A = 4 \int_{0}^{4} A = 2^{\frac{3}{2}}$$

$$b = -4 \int_{0}^{4} A = -2^{\frac{3}{2}}$$

$$C = 3 \int_{0}^{4} A = -4$$

$$(A - b)^{\frac{1}{2}} + C = (2^{\frac{5}{2}})^{\frac{1}{2}} - 4 = 32 - 4 = 28_{1/2}$$

03

▶ 22054-0003

 $x=\sqrt[3]{4}+\sqrt[3]{16}$ 일 때, x^3-12x 의 값을 구하시오.

x3-12x=(a+b)3-12(a+b) = a3+63+3a6(a+6)-6(a+6) = a3+b3+Bab-12)(a+b) ... () **水 出版 知由** र्म्प्राक्ष रहित

 $a^3 = 4$, $b^3 = 16$, ab = 4...

(C) →(C) THO!

=> 4+16+0==20

▶ 22054-0004

집합 $X = \{2, 3, 4, 5, 6\}$ 에 대하여 집합 Y를

 $Y = \{(a, b) | a \in X$ 이고 $b \in X\}$

라 하자. 집합 Y의 원소 (a, b) 중에서 a의 b제곱근 중 실수인 것의 개수가 2인 원소의 개수는 m이고. -a의 b제곱근 중 실수 인 것의 개수가 1인 원소의 개수는 n이다. m+n의 값을 구하 시오

유형 2 지수의 확장과 지수법칙

출제경향 | 거듭제곱근을 지수가 유리수인 꼴로 나타내는 문제, 지수법 칙을 이용하여 식의 값을 계산하는 문제가 출제된다.

출제유형잡기 | 지수법칙을 이용하여 문제를 해결한다.

(1) $a \neq 0$ 이고 n이 양의 정수일 때

$$\bigcirc a^0 =$$

(2) a > 0이고 m이 정수, n이 2 이상의 정수일 때

$$\bigcirc a^{\frac{1}{n}} = \sqrt[n]{a}$$

$$\bigcirc a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

(3) 지수법칙

a>0, b>0이고 x, y가 실수일 때

$$(3)(a^x)^y=a^{xy}$$

$$(ab)^x = a^x b^x$$

필수유형 2

| 2022학년도 대수능 |

 $(2^{\sqrt{3}} \times 4)^{\sqrt{3}-2}$ 의 값은? [2점]

$$\bigcirc \frac{1}{4}$$

3 1

(4) 2

5 4

2 = 2 = 2

05

▶ 22054-0005

$$\left(\frac{1}{4}\right)^{-\frac{1}{8}} \times \left(\frac{1}{8}\right)^{-\frac{1}{4}}$$
의 값은?

- 1
- ② $2^{\frac{1}{2}}$
- 2

- $\bigcirc 2^{\frac{3}{2}}$
- (5) 4

24+4=2

22054-0006

실수 x에 대하여 $\frac{2^x+2^{-x}}{2^x-2^{-x}}=2$ 일 때, $\frac{8^x-8^{-x}}{2^x+2^{-x}}$ 의 값은?

$$\underbrace{13}_{6}$$

- ② $\frac{7}{3}$
- $3\frac{5}{2}$

- $4\frac{8}{3}$
- $\frac{17}{6}$

$$\frac{\left(2^{x}+2^{-x}\right)\times2^{x}}{\left(2^{x}-2^{-x}\right)\times2^{x}} = \frac{4^{x}+1}{4^{x}-1} = 2, \quad 4^{x}=3$$

$$\frac{\left(8^{x}-8^{-x}\right)\times2^{x}}{\left(2^{x}+2^{-x}\right)\times2^{x}} = \frac{4^{2x}-4^{-x}}{4^{x}+1} = \frac{9-\frac{1}{3}}{4} = \frac{26}{12} = \frac{13}{6}$$

07

22054-0007

두 실수 a, b에 대하여 $a^b=4$, $(2a)^{2b}=8$

일 때, $(8a)^{8b}$ 의 값은? (단, a>0)

- ② 32
- 3 64

- 4) 128
- ⑤ 256

$$2^{16} \times a^{16} = 4^{16} \times (6 = 8, 4^{16} = \frac{1}{2}, \frac{1}{12})^{16} = 4^{16} \times (6 = 8, 4^{16} = \frac{1}{2}, \frac{1}{12})^{16} = 6^{16} \times (8a)^{16} = (\frac{1}{2})^{16} = 6^{16} \times (8a)^{16} = 6^{16}$$

08

22054-0008

0이 아닌 두 실수 x, y가 다음 조건을 만족시킨다.

$$(7!) 2^{x} \times 3^{y} = 1 \longrightarrow 2^{x} = 3^{-y} - k > 0$$

$$(1!) \frac{1}{x} - \frac{1}{y} = -2$$

$$\frac{9^{y}}{16^{x}} = \frac{1}{16^{x}} =$$

유형 3 로그의 뜻과 기본 성질

출제경향 | 로그의 뜻과 로그의 성질을 이용하여 주어진 식의 값을 구 하는 문제가 출제된다.

출제유형잡기 | 로그의 뜻과 로그의 성질을 이용하여 문제를 해결한다.

- (1) a > 0, $a \neq 1$, N > 0일 때, $a^x = N \iff x = \log_a N$
- (2) $\log_a N$ 이 정의되려면 밑 a는 a>0, $a\ne1$ 이고 진수 N은 N>0이
- (3) a>0, $a\neq 1$ 이고 M>0, N>0일 때
 - ① $\log_a 1 = 0$, $\log_a a = 1$

 - ④ $\log_a M^k = k \log_a M$ (단, k는 실수)

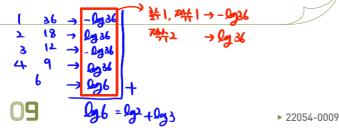
(A) \$161)

| 2020학년도 대수능 |

자연수 n의 양의 약수의 개수를 f(n)이라 하고, 36의 모든 양의 약수를 $a_1, a_2, a_3, \dots, a_9$ 라 하자.

 $\sum_{k=0}^{9} \{(-1)^{f(a_k)} \times \log a_k\}$ 의 값은? [4점]

- $9 \log 2 + \log 3$
- $2 \log 2 + \log 3$
- $3 \log 2 + 2 \log 3$
- $4 2 \log 2 + 2 \log 3$
- $(5) 3 \log 2 + 2 \log 3$



log₃ 4-2 log₃ 6의 값은?

- (2) -1
- ③ 0

(4) **1**

(5) 2

$$0_{3}^{\frac{4}{36}} = -2$$

10

▶ 22054-0010

두 양수 a, b에 대하여

 $\log_2(a+4b)=4$, $\log_2 a + \log_2 b=4$ 일 때, $a^2 + 16b^2$ 의 값을 구하시오.

a+4b=16, ab=16

22054-0011

x에 대한 이차방정식 $x^2 - (\log_2 24)x + k = 0$ 의 한 근이 $\log_2 3$ 일 때, 2^k 의 값을 구하시오. (단, k는 상수이다.)

$$x = \log_{3} 3$$

$$k = (\log_{3} 24 - x) x = 3 \cdot \log_{3} 3 = \log_{3} 27$$

$$2^{k} = 27$$

▶ 22054-0012

1이 아닌 세 양수 a. b. c에 대하여

일 때, $\log_a a + \log_c a = 2$ 일 때, $\log_c a + \log_c b$ 의 값은?

① 3

③ 4

$$0 \rightarrow a=bC \rightarrow b=c^{2}, a=c^{3}$$

$$0 \rightarrow b^{2}=aC \rightarrow b=c^{3}, a=c^{3}$$

유형 4 로그의 여러 가지 성질

출제경향 | 로그의 여러 가지 성질을 이용하여 주어진 식의 값을 구하는 문제가 출제된다.

출제유형잡기 | 로그의 여러 가지 성질을 이용하여 문제를 해결한다.

(1) 로그의 밑의 변환

$$a > 0$$
, $a \ne 1$, $b > 0$, $c > 0$, $c \ne 1 \supseteq \mathbb{H}$, $\log_a b = \frac{\log_c b}{\log_c a}$

(2) 로그의 밑의 변환의 활용

a>0, $a\neq 1$, b>0일 때

①
$$\log_a b = \frac{1}{\log_b a}$$
 (단, $b \neq 1$)

- ② $\log_a b \times \log_b c = \log_a c$ (단, $b \neq 1$, c > 0)
- ③ $\log_{a^n} b^n = \frac{n}{m} \log_a b$ (단, m, n은 실수이고, $m \neq 0$ 이다.)
- ④ $a^{\log_b c} = c^{\log_b a}$ (단. $b \neq 1$, c > 0)

필수유형 4

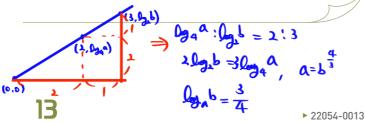
| 2021학년도 대수능 6월 모의평가 |

두 양수 a, b에 대하여 좌표평면 위의 두 점 $(2, \log_4 a)$, $(3, \log_2 b)$ 를 지나는 직선이 원점을 지날 때, $\log_a b$ 의 값은?

(단, $a \neq 1$) [3점]

- $2\frac{1}{2}$
- $3\frac{3}{4}$

- **4** 1
- $^{5}\frac{5}{4}$



 $\left(\frac{1}{2}\right)^{\log_2 3} \times 9^{\log_3 6}$ 의 값은?

- ① 6
- 2 12
- ③ 18

- (4) 24
- (5) 30

$$3_{-1} \times 8_{-2} = (5)$$

14

22054-0014

등식 $\log_x 2 + \frac{1}{\log_3 x} + \frac{\log 5}{\log x} = \frac{1}{2}$ 을 만족시키는 양수 x의 값을 구하시오. (단, $x \neq 1$)

$$\log_{x}^{2} + \log_{x}^{3} + \log_{x}^{5} = \log_{x}^{30} = \frac{1}{2}$$

15

▶ 22054-0015

다음 상용로그표를 사용하여 $\log x + \log 214 = 4.7386$ 을 만족시키는 자연수 x의 값을 구하시오.

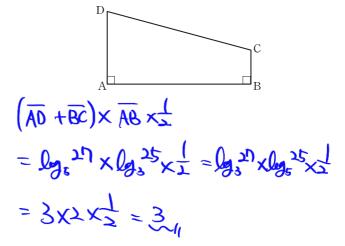
수	0	1	2	3	4	5	6	7	8	9
2.0	.3010	.3032	.3054	.3075	.3096	.3118	.3139	.3160	.3181	.3201
2.1	.3222	.3243	.3263	.3284	3304	.3324	.3345	.3365	.3385	.3404
2.2	.3424	.3444	.3464	.3483	.3502	.3522	.3541	.3560	.3579	.3598
2.3	.3617	.3636	.3655	.3674	.3692	.3711	.3729	.3747	.3766	.3784
2.4	.3802	.3820	.3838	.3856	.3874	.3892	.3909	.3927	.3945	.3962
2.5	.3979	.3997	.4014	.4031	.4048	.4065	.4082	.4099	.4116	.4133

$$\lim_{x \to 2.56} 1.14 + 2 = 1.8304 \rightarrow \lim_{x \to 2.4082} x = 2.4082$$

16

▶ 22054-0016

그림과 같이 사각형 ABCD에서 $\overline{AB} = \log_3 25$, $\overline{BC} = \log_5 3$, $\overline{AD} = \log_5 9$ 이고, 선분 BC와 선분 AD는 모두 선분 AB와 수 직이다. 사각형 ABCD의 넓이를 구하시오.



유형 5 지수함수와 그 그래프

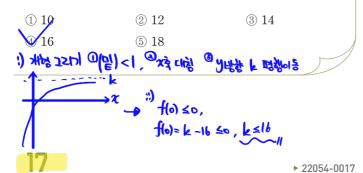
출제경향 | 지수함수의 성질과 그 그래프의 특징을 이해하고 있는지를 묻는 문제가 출제된다.

출제유형잡기 | 지수함수의 밑의 범위에 따른 지수함수의 증가와 감소. 지수함수의 그래프의 점근선, 평행이동과 대칭이동을 이해하여 문제를 해결한다.

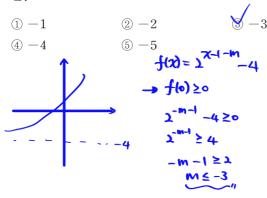
필수유형 5

| 2019학년도 대수능 9월 모의평가 |

함수 $f(x) = -2^{4-3x} + k$ 의 그래프가 제2사분면을 지나지 않 도록 하는 자연수 k의 최댓값은? [3점]

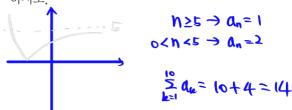


함수 $y=2^{x-1}-4$ 의 그래프를 x축의 방향으로 m만큼 평행이동 한 그래프가 제 4사분면을 지나지 않도록 하는 실수 m의 최댓값 <u>0</u>?



▶ 22054-0018

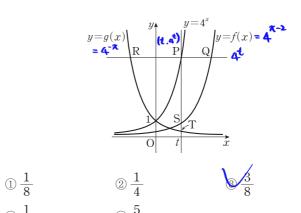
자연수 n에 대하여 함수 $y = \left| \left(\frac{1}{2} \right)^x - 5 \right|$ 의 그래프가 직선 y = n과 만나는 서로 다른 점의 개수를 a_n 이라 하자. $\sum\limits_{b=1}^{10}a_k$ 의 값을 구 하시오.



19

▶ 22054-0019

함수 $y=4^x$ 의 그래프를 x축의 방향으로 2만큼 평행이동한 그래 프가 나타내는 함수를 y=f(x)라 하고. 함수 $y=4^x$ 의 그래프를 y축에 대하여 대칭이동한 그래프가 나타내는 함수를 y=g(x)라 하자. 그림과 같이 곡선 $y=4^x$ 위의 점 $P(t, 4^t)$ (t>1)에 대 하여 점 P를 지나고 x축에 평행한 직선이 두 곡선 y=f(x). y=g(x)와 만나는 점을 각각 Q, R라 하고, 점 P를 지나고 y축 에 평행한 직선이 두 곡선 y=f(x), y=g(x)와 만나는 점을 각각 S. T라 하자. $\overline{QR} = 5$ 일 때, 선분 ST의 길이는?



- @ Rel x341 > 4-x =4t, x=-t, R(-t,4t)
- (a) $\overline{QR} = t + 2 (-t) = t$, $t = \frac{3}{2}$
- 9 SMI → $(\frac{3}{2}, 4^{-\frac{1}{2}})$ TAHI $(\frac{3}{2}, 4^{-\frac{1}{2}})$
- (b) $57 = 4^{-\frac{1}{4}} 4^{-\frac{3}{4}} = 4^{-\frac{1}{4}} (1 \frac{1}{4}) = \frac{1}{2} \times \frac{3}{4} = \frac{3}{8}$

유형 6 지수함수의 활용

출제경향 | 지수에 미지수가 포함된 방정식, 부등식의 해를 구하는 문 제가 출제된다.

출제유형잡기 | 지수에 미지수가 포함된 방정식, 부등식의 해를 구할 때에는 다음과 같은 성질을 이용하여 문제를 해결한다.

(1) a > 0, $a \neq 1$ 일 때

$$a^{f(x)} = a^{g(x)} \iff f(x) = g(x)$$

(2) a>1일 때

$$a^{f(x)} < a^{g(x)} \iff f(x) < g(x)$$

0<a<1일 때

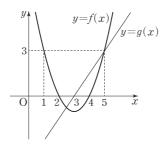
$$a^{f(x)} < a^{g(x)} \iff f(x) > g(x)$$

| 2019학년도 대수능 |

이차함수 y=f(x)의 그래프와 일차함수 y=g(x)의 그래프 가 그림과 같을 때, 부등식

$$\left(\frac{1}{2}\right)^{f(x)g(x)} \ge \left(\frac{1}{8}\right)^{g(x)}$$

을 만족시키는 모든 자연수 x의 값의 합은? [4점]



② 9

③ 11

(5) 15

(i) g(x)20

11) 1/2)<0

→ fm) 53

-> X=4.5

143+445=13

20

▶ 22054-0020

연립방정식

$$\begin{cases} x - y = 2 & y = x > \\ 4^{x} + 4^{y+1} = 40 \end{cases}$$

의 해를 $x=\alpha$, $y=\beta$ 라 할 때, $\alpha\beta$ 의 값은?

41
$$\sqrt[3]{\frac{5}{4}}$$
 $4^{x} + 4^{y+1} = 4^{x} + 4^{x-1} = 4^{x} (H^{\frac{1}{4}}) = \frac{5}{4} \cdot 4^{x} = 40, 4^{x} = 32$
 $4 = \log_{4} \frac{3^{2}}{2} = \frac{5}{4}, \beta = \frac{1}{4}, \sqrt[3]{\beta^{2} - \frac{5}{4}},$

▶ 22054-0021

모든 실수 x에 대하여 부등식

$$(2^{x}+2)^{2}+2^{x}+a>0$$

이 성립하도록 하는 실수 a의 최솟값은?

 $^{(3)} -3$

 $2^{\kappa}>0 \rightarrow (2^{\kappa}+2)^{2}>4$

 $(2^{x+2})^{2}+2^{x}>4+0\geq -\alpha$, $\alpha\geq -4$

22054-0022

방정식 $2^{2x+1}-2^{x+4}+9=0$ 의 두 근을 α . β 라 할 때.

2x=t -> 2t2-kt+9=0

유형 / 로그함수와 그 그래프

출제경향 | 로그함수의 성질과 그 그래프의 특징을 이해하고 있는지를 묻는 문제가 출제된다.

출제유형잡기 | 로그함수의 밑의 범위에 따른 로그함수의 증가와 감소 로그함수의 그래프의 점근선, 평행이동과 대칭이동을 이해하여 문제를 해결한다.

然~(重ging)

| 2018학년도 대수능 9월 모의평가 |

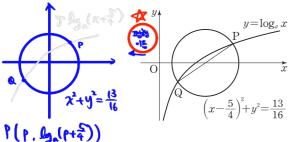
a>1인 실수 a에 대하여 곡선 $y=\log_a x$ 와 원 $C: \left(x - \frac{5}{4}\right)^2 + y^2 = \frac{13}{16}$ 의 두 교점을 P, Q라 하자. 선분 PQ가 원 C의 지름일 때, a의 값은? [4점]

(1) 3

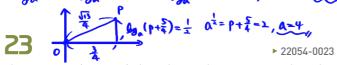
 $2\frac{7}{2}$

 $4\frac{9}{2}$

(5) **5**



Q(-P, 0, (-P+4))



함수 $y=\log_3(5x-45)$ 의 그래프는 함수 $y=\log_3 x$ 의 그래프 를 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 것이다. 두 상수 m. n에 대하여 m^n 의 값을 구하시오.

$$M = 9$$
, $N = 9.5$
 $m^{1} = 9.35 = 25$

22054-0024

0 < a < 1 < b인 두 실수 a, b에 대하여 정의역이 $\{x | x \neq 0$ 인 실수 $\}$ 인 함수 y = f(x)를

$$f(x) = \begin{cases} \log_a(-x) & (x < 0) \\ \log_b x & (x > 0) \end{cases}$$

이라 하자. 함수 y=f(x)의 그래프와 직선 y=n (n은 자연수) 가 만나는 두 점을 각각 P_n , Q_n 이라 하자. $\overline{P_1Q_1}=2$, $\overline{P_2Q_2}=3$ 일 때, 선분 P₂Q₂의 길이는?

(단, 점 P_n 의 x좌표는 점 Q_n 의 x좌표보다 크다.)

①
$$\frac{7}{2}$$
 ② 4 ③ $\frac{9}{2}$

⑤ $\frac{11}{2}$

Day $a^{(-R)} = 1$, $x = -a^{n}$) $\rightarrow P_{n}Q_{n} = a^{n} + b^{n}$,

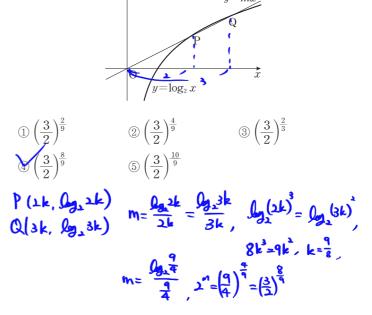
 $a+b=2$, $a^{2}+b^{2}=3$
 $a^{2}+b^{2}=(a+b)^{2}-2ab$, $3=4-2ab$, $ab=\frac{1}{2}$,

 $a^{3}+b^{2}=(a+b)^{3}-3ab(a+b)=8-3\cdot\frac{1}{2}\cdot 2=\frac{5}{2}$,

25

▶ 22054-0025

그림과 같이 함수 $y=\log_2 x$ 의 그래프와 직선 y=mx (m>0)이 서로 다른 두 점 P, Q에서 만난다. $\overline{OP} = 2\overline{PQ}$ 일 때. 2^m 의 값은? (단. O는 원점이다.)



유형 8 로그함수의 활용

출제경향 | 진수에 미지수가 포함된 방정식, 부등식의 해를 구하는 문제가 출제된다.

출제유형잡기 | 진수에 미지수가 포함된 방정식, 부등식의 해를 구할때에는 다음과 같은 성질을 이용하여 문제를 해결한다.

(1) a > 0, $a \neq 1$ 일 때

 $\log_a f(x) = \log_a g(x) \iff f(x) = g(x), \ f(x) > 0, \ g(x) > 0$ (2) a > 1일 때

 $\log_a f(x) < \log_a g(x) \iff 0 < f(x) < g(x)$

0<a<1일 때

 $\log_a f(x) < \log_a g(x) \iff f(x) > g(x) > 0$

필수유형 8

| 2019학년도 대수능 6월 모의평가 |

직선 x=k가 두 곡선 $y=\log_2 x$, $y=-\log_2(8-x)$ 와 만나는 점을 각각 A, B라 하자. $\overline{AB}=2$ 가 되도록 하는 모든 실수 k의 값의 곱은? (단, 0< k<8) [4점]

①
$$\frac{1}{2}$$

$$3\frac{3}{2}$$

$$(5) \frac{5}{2}$$

$$\overline{AB} = ||g_1k + ||g_2(8-k)|| = 2$$

:) $k(8-k) = 4 \rightarrow k^2 + 4 + 4 = 0$

▶ 22054-0026

방정식

 $\log x + \log (x-4)^2 = \log (12-3x)$

를 만족시키는 모든 실수 x의 값의 합을 구하시오.

$$\chi(\chi-4)^{2}=3(4-\chi),$$

 $(\chi-4)(\chi-1)(\chi-3)=0,$
 $\chi=1,3$
 $1+3=4$

27

22054-0027

부등식

 $\log_{\frac{x}{3}}(x^2+12) \le \log_{\frac{x}{3}}8x$

를 만족시키는 모든 자연수 x의 개수를 구하시오. (단, $x \neq 3$)

.'. o< X ≤ 2

x≥6 or x ≤2

± ,,,

28

22054-0028

인지심리학에서 앤더슨(Anderson)의 연구에 의하면 반응시간 $T(\bar{\mathbf{x}})$ 와 연습일수 $P(\bar{\mathbf{y}})$ 사이에는 다음과 같은 관계식이성립한다고 한다.

$$\log T = K - \frac{1}{4} \log P$$

(단, K는 상수이고, T>0, P>0이다.) 연습일수가 P_1 일 때의 반응시간이 T_1 이고, 연습일수가 P_2 일 때의 반응시간은 T_2 이다. P_2 =10 P_1 일 때, $\frac{T_1}{T_2}$ 의 값은?

$$10^{\frac{1}{32}}$$

$$2 10^{\frac{1}{16}}$$

 $(3) 10^{\frac{1}{8}}$

$$\log \frac{T_1}{T_2} = \frac{1}{4} \log \frac{P_2}{P_1} = \frac{1}{4}$$

$$\frac{T_1}{T_2} = 10^{\frac{1}{4}}$$

유형 9 지수함수와 로그함수의 관계

출제경향 | 지수함수의 그래프와 로그함수의 그래프를 활용하는 문제 가 출제된다.

출제유형잡기 | 지수함수의 그래프와 로그함수의 그래프, 지수의 성질 과 로그의 성질을 이용하여 문제를 해결한다.

필수유형 9

| 2019학년도 대수능 |

함수 $y=2^x+2$ 의 그래프를 x축의 방향으로 m만큼 평행이동 한 그래프가 함수 $y=\log_2 8x$ 의 그래프를 x축의 방향으로 2 만큼 평행이동한 그래프와 직선 y=x에 대하여 대칭일 때. 상수 m의 값은? [3점]

- ① 1
- (2) **2**

- 4
- (5) **5**

29

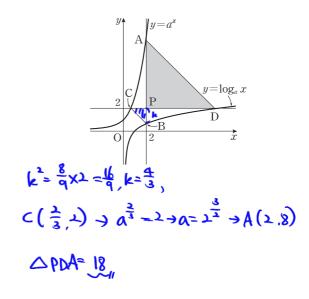
a>1인 상수 a에 대하여 두 함수 $y=a^x-1$, $y=\log_a(x+1)$ 의 그래프는 원점 O와 제1사분면 위의 점 P에서 만난다. $OP=8\sqrt{2}$ 일 때, a^4 의 값을 구하시오.

(88) 9 Q

 $\rightarrow a^8 - 1 = 8$, $a^8 = 9$, $a^4 = 3$

▶ 22054-0030

 $\sqrt{2}$ 보다 큰 실수 a에 대하여 두 함수 $y=a^x$, $y=\log_a x$ 의 그래 프가 그림과 같다. 두 곡선 $y=a^x$, $y=\log_a x$ 가 직선 x=2와 만나는 점을 각각 A, B라 하고, 직선 y=2와 만나는 점을 각각 C, D라 하자. 점 P(2, 2)에 대하여 삼각형 PCB의 넓이가 $\frac{8}{9}$ 일 때, 삼각형 PDA의 넓이를 구하시오.



31

함수 $f(x) = \log_a x + b$ 의 그래프를 직선 y = x에 대하여 대칭 이동한 그래프가 나타내는 함수를 y=g(x)라 하자. 두 함수 y=f(x), y=g(x)의 그래프가 점 (1, 2)에서 만날 때, 두 상 수 a, b의 합 a+b의 값은? (단, a는 1이 아닌 양수이다.)

$$\begin{array}{c}
1 \\
5 \\
\hline
\end{array}$$

③ 2

$$g(x) = a^{x-b},$$
 $f(1) = b = 2,$
 $g(1) = a^{-1} = 2, a = \frac{1}{2},$
 $a+b = \frac{5}{2},$

유형 10 지수함수와 로그함수의 최댓값과 최솟값

출제경향 | 주어진 범위에서 지수함수와 로그함수의 최댓값과 최솟값을 구하는 문제가 출제된다.

출제유형잡기 | 밑의 범위에 따른 지수함수와 로그함수의 증기와 감소를 이해하여 주어진 구간에서 지수함수 또는 로그함수의 최댓값과 최 솟값을 구하는 문제를 해결한다.

필수유형10

| 2021학년도 대수능 6월 모의평가 |

함수

$$f(x) = 2\log_{\frac{1}{2}}(x+k)$$

가 닫힌구간 [0, 12]에서 최댓값 -4, 최솟값 m을 갖는다. k+m의 값은? (단, k는 상수이다.) [3점]

$$3 - 3$$

$$^{\circ}$$
 $^{-5}$

$$M = f(0) = 2 \log_{10} k = -4$$
, $k = 4$

32 ► 22054-003:

정의역이 $\{x | 0 \le x \le a\}$ 인 함수 $f(x) = \log_3(2x + a)$ 의 최솟 값이y-1일 때, 함수 f(x)의 최댓값은? (단, a는 양수이다.)

- 2 1
- $3\frac{1}{2}$

- $4\frac{3}{4}$
- (5) **1**

$$M = f(0) = \log_3 \alpha = -1$$
, $\alpha = \frac{1}{3}$
 $M = f(\frac{1}{3}) = \log_3 1 = 0$

33

22054-0033

정의역이 $\{x|1 \le x \le 2\}$ 인 함수 $f(x) = a^x + 2a^2$ 의 최댓값이 1 일 때, 함수 f(x)의 최솟값은? (단, a는 1이 아닌 양수이다.)

- $\textcircled{2} \ \frac{1}{2}$
- $^{\circ}$

$$M = f(x) = 3a^2 = 1$$
 (26)

 $m = f(z) = 3a^2 = \frac{3}{4}$

$$(f)_{0<0} < 1$$

 $M = f(1) = 2a^{2} + a = 1$
 $2a^{2} + a - 1 = (2a - 1)(a + 1) = 0, \ \underline{a} = \frac{1}{2a}$

34

▶ 22054-0034

두 함수 $f(x)=2 imes\left(rac{1}{4}
ight)^x+1$, $g(x)=\log_{rac{1}{3}}x$ 에 대하여 $-1\leq x\leq 0$ 에서 함수 $(g\circ f)(x)$ 의 최댓값과 최솟값을 각각 M,m이라 하자. M-m의 값은?

- 255

③ 3

 $-1 \le x \le 0 \rightarrow 3 \le f(x) \le 9$

$$M = g(3) = -1$$

$$m = 3(9) = -2$$

$$M-m=$$