2022학년도 대학수학능력시험 모의평가 1회 문제지

수학 영역 (미적분)

성명		수험번호									
----	--	------	--	--	--	--	--	--	--	--	--

- 자신이 선택한 유형(확률과 통계/미적분/기하)의 문제지인지 확인하시오.
- 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.
- 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.

헤맨다고 길을 잃는 것은 아니리

- 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호와 답을 정확히 표시하시오.
- 단답형 답의 숫자에 '0'이 포함되면 그 '0'도 답란에 반드시 표시하시오.
- 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.
- 계산은 문제지의 여백을 활용하시오.

※ 시험이 시작되기 전까지 표지를 넘기지 마시오.

Epsilon

2021년 8월 14일 시행

Epsilon 모의고사 1회

출제위원 : 성균관대학교 수학교육과 수학문제연구학회 Epsilon

19학번 : 황주영

20학번 : 김동연, 김동해, 송문주, 이도윤

이선우, 정원철, 최인환

21학번 : 김민성, 김서원, 김예찬, 박창수

서연수, 심현재, 황민수

편집위원 : 성균관대학교 수학교육과 수학문제연구학회 Epsilon 편집위원회

20학번 : 김유진, 김태희, 최연조

21학번 : 류은수, 박주원

자문 :

장지원 (성균관대학교 수학교육과 19) 정재훈 (성균관대학교 수학교육과 19)

검토위원 :

서희수 (성균관대학교 수학교육과 16)

김동현 (성균관대학교 수학교육과 18)

안동우 (성균관대학교 수학교육과 18)

강종우 (성균관대학교 수학교육과 19)

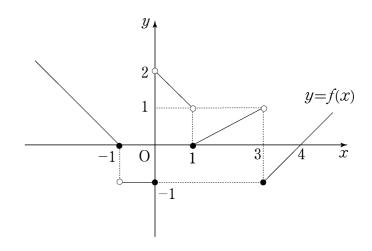
전재완 (성균관대학교 수학교육과 20)

엡실론(Epsilon) 팀 혹은 엡실론(Epsilon) 모의고사에 관하여 문의 사항이 있으신 경우 dongyeon0101@naver.com으로 연락 주시기 바랍니다.

제 2 교시

수학 영역

성균관대학교 수학교육과 Epsilon 주관


5지선다형

- 1. $3^{\sqrt{6}} \times 3^{2-\sqrt{6}}$ 의 값은? [2점]
 - ① $\sqrt{3}$ ② 3
- $3\sqrt{3}$ 4 9
- ⑤ $9\sqrt{3}$

- 2. $\int_{-3}^{3} (x^2 + 6x + 7) dx$ 의 값은? [2점]
 - 1 40
- \bigcirc 50
- 3 60
- **4** 70
- ⑤ 80

- **3.** 곡선 $y = \log_2(x-3)$ 의 점근선과 곡선 $y = 3^{x-2} + 1$ 의 교점의 y좌표는? [3점]
- ① 4 ② 5 ③ 6
- **4** 7
- **⑤** 8

4. 함수 y = f(x)의 그래프가 그림과 같다.

- $\lim_{x\to 0+} f(x) + \lim_{x\to -1-} f(x)$ 의 값은? [3점]
- \bigcirc -1
- $\bigcirc 0$
- 3 1
 - 4 2
- ⑤ 3

- 5. 다항함수 f(x)의 도함수 f'(x)가 $f'(x) = 12x^2 6$ 이다. 함수 f(x)의 한 부정적분 F(x)가 F(1) = -5, F(2) = 6을 만족시킬 때, f(1)의 값은? [3점]
 - ① 1
- ② 2
- ③ 3
- 4
- **⑤** 5

6. 함수

$$f(x) = \begin{cases} ax+b & (x<1) \\ x^2+cx & (x \ge 1) \end{cases}$$

이 실수 전체의 집합에서 미분가능하고 f(1)=0일 때, f(-1)의 값은? (단, a, b, c는 상수이다.) [3점]

- $\bigcirc -2$ $\bigcirc -1$ $\bigcirc 0$ $\bigcirc 1$

- **⑤** 2

7. 공비가 각각 r, 6인 두 등비수열 $\left\{a_{n}\right\}$, $\left\{b_{n}\right\}$ 이 모든 자연수 n에 대하여

$$b_n = 3^n \times a_n$$

을 만족시킨다. $a_2 + a_4 = 5$ 일 때, $r + b_2$ 의 값은? [3점]

- ① 7
- ② 9 ③ 11
- **4** 13
- **⑤** 15

- 8. 함수 $f(x) = x^3 x^2 + ax + b$ 의 그래프 위의 점 A(1, 4)에서의 접선이 곡선 y = f(x)와 만나는 점 중 A가 아닌 점을 B라 하자. 점 B에서의 접선의 기울기가 6일 때, f(2)의 값은? (단, a, b는 상수이다.) [3점]
 - 1 6
- ② 7 ③ 8
- 4 9
- ⑤ 10

9. 두 다항함수 f(x), g(x)가 다음 조건을 만족시킨다.

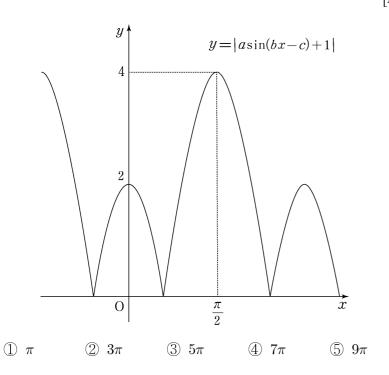
$$(7) \lim_{x \to a} \frac{f(x) + g(x)}{x - a} = 4$$

$$(4) \lim_{x \to a} \frac{f(x) - 2f(2) - g(x)}{x - a} = 6$$

모든 실수 x에 대하여 f'(x) > 0일 때, $a \times f'(a) \times g'(a)$ 의 값은? (단, a는 상수이다.) [4점]

- $\bigcirc 1 12$ $\bigcirc 2 10$ $\bigcirc 3 8$ $\bigcirc 4 6$ $\bigcirc 5 4$

10. 수직선 위를 움직이는 두 점 P, Q의 시각 $t(t \ge 0)$ 에서의 속도 $v_1(t)$, $v_2(t)$ 가 각각


$$v_1(t) = 3t^2 - 16t + 10, \quad v_2(t) = 2t + 16$$

이다. 선분 PQ를 1:2로 내분하는 점을 R라 할 때, 점 R가 시각 t=0일 때부터 움직이는 방향이 두 번 바뀔 때까지 움직인 거리는? (단, 점 P와 점 Q는 만나지 않는다.) [4점]

- ① $\frac{28}{3}$ ② $\frac{29}{3}$ ③ 10 ④ $\frac{31}{3}$ ⑤ $\frac{32}{3}$

11. 세 상수 a, b, c에 대하여 함수 $y = |a\sin(bx-c) + 1|$ 의 그래프가 그림과 같을 때, abc의 최댓값은? (단, $0 < c < 2\pi$)

[4점]

- 12. 모든 자연수 n에 대하여 다음 조건을 만족시키는 y축 위의 점 P_n 과 제1사분면에 있는 곡선 $y=2x^2$ 위의 점 Q_n 이 있다.
 - · 직선 P_nQ_n 은 y축에 수직이다.
 - · 직선 OQ_n 과 직선 $P_{n+1}Q_n$ 이 서로 수직이다.

두 삼각형 $P_{n+1}Q_nQ_{n+1}$, OP_nQ_{n+1} 의 넓이를 각각 A_n , B_n 이라 하자. 다음은 $\frac{B_1}{A_1}=\frac{3}{2}$ 일 때, $\frac{B_n}{A_n}$ 을 구하는 과정이다. (단, 0는 원점이다.)

모든 자연수 n에 대하여 점 \mathbf{Q}_n 의 x좌표를 a_n 이라 하면 직선 OQ_n 의 기울기는 $2a_n$ 이다.

점 Q_n 을 지나면서 직선 OQ_n 과 수직인 직선을 l이라 할 때, 직선 l의 방정식은 $y = -\frac{1}{2a_n}(x-a_n) + 2(a_n)^2$ 이다. 직선 l이 y축과 만나는 점이 P_{n+1} 이므로 점 P_{n+1} 의 좌표는 $\left(0, 2(a_n)^2 + \frac{1}{2}\right)$ 이고, 점 Q_{n+1} 의 y좌표가

$$2(a_{n+1})^2$$
이므로 $A_n=rac{a_{n+1}}{ \ \ \ \ \ }$ 이다.

점 P_n 의 좌표가 $\left(0,\,2(a_n)^2\right)$ 이고 점 Q_{n+1} 의 x좌표가 a_{n+1} 이므로 $B_n = (a_n)^2 \times a_{n+1}$ 이다.

따라서
$$\frac{B_n}{A_n} =$$
 (7) $\times (a_n)^2$ 이고,

 $\frac{B_1}{A_1} = \frac{3}{2}$ 이므로 모든 자연수 n에 대하여

$$\frac{B_n}{A_n} =$$
 (나) 이다.

위의 (7)에 알맞은 수를 p, (나)에 알맞은 식을 f(n)이라 할 때, $p \times f(4)$ 의 값은? [4점]

- ① 9 ② 12 ③ 15
- **4** 18 **5** 21

13. 일차항의 계수가 0인 삼차함수 f(x)가 다음 조건을 만족시킨다.

- (가) 방정식 f(x) = f(-1)의 서로 다른 실근의 개수는 2이다.
- $(\downarrow +) f'(-1) \times f'(1) < 0$

 $f(-1) \times f(2) = \{f(1)\}^2$ 일 때, $\frac{f(-2)}{f(2)}$ 의 값은? [4점]

- ① 16
- ② 17
- ③ 18 ④ 19

14. $k \ge 2$ 인 실수 k에 대하여 곡선 $y = 2^{-x}$ 이 두 곡선 $y = 2^{x+k}$, $y = -\log_2(x-k)$ 와 만나는 점을 각각 (x_1, y_1) , $\left(x_{2},\,y_{2}
ight)$ 라 하자. <보기>에서 옳은 것만을 있는 대로 고른 것은? [4점]

---<보 기>-

- \neg . $k < x_2 < k+1$
- $-. \ y_2 < \frac{1}{4}$
- \sqsubseteq . $x_1y_1 + x_2y_2 < 0$

- ① 7 ② 7, 上 ③ 7, ⊏
- 4 4, 5 7, 4, 5

15. 최고차항의 계수가 1인 삼차함수 f(x)가 양수 k에 대하여 다음 조건을 만족시킨다.

(가)
$$f(0) = f(k)$$

(나)
$$\int_{0}^{k} f(t) dt = k f(0)$$

함수 $g(x) = \int_0^x (x-t)f(t)dt - x^2$ 이 극솟값을 갖지 않을 때, f(1)의 최솟값은? [4점]

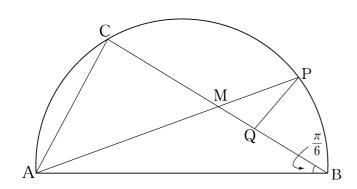
- ① $\frac{15}{8}$ ② $\frac{31}{16}$ ③ 2 ④ $\frac{33}{16}$ ⑤ $\frac{17}{8}$

단답형

16. 등차수열 $\{a_n\}$ 에 대하여 $a_1+a_2=4$, $a_3=4$ 일 때, a_6 의 값을 구하시오. [3점]

17. 두 다항함수 $f(x) = x^2 - 4x + 6$ 과 g(x)에 대하여 g'(2) = 3일 때, 함수 f(x)g(x)의 x=2에서의 미분계수를 구하시오. [3점]

18. 1보다 큰 두 실수 a, b에 대하여


$$\frac{\log b}{\log a} - \frac{2\log a}{\log b} = 1$$

이 성립할 때, $(\log_a b)^2$ 의 값을 구하시오. [3점]

19. $\frac{\pi}{2} < \theta < \pi$ 인 θ 에 대하여 $\sin \theta + 2\cos \theta = -\frac{2}{5}$ 일 때, $2\sin \theta - \cos \theta$ 의 값은 k이다. 100k의 값을 구하시오. [3점]

- **20.** 다음 조건을 만족시키는 최고차항의 계수가 1인 모든 삼차함수 f(x)에 대하여 함수 f(x)가 x=a에서 극솟값을 갖도록 하는 모든 실수 a의 값의 합을 구하시오. [4점]
 - (가) 함수 f(x)는 x=0에서 극댓값 4를 갖는다.
 - (나) 방정식 $(f' \circ f)(x) = 3f(x)$ 의 서로 다른 실근의 개수는 5이다.

21. 그림과 같이 길이가 4인 선분 AB를 지름으로 하는 반원이 있다. 호 AB 위에 점 C를 \angle ABC = $\frac{\pi}{6}$ 가 되도록 잡는다. 호 BC 위의 점 P에 대하여 선분 AP가 선분 BC의 중점 M을 지난다. 선분 BM을 2:1로 내분하는 점 Q에 대하여 삼각형 PMQ의 외접원의 넓이가 $\frac{q}{p}\pi$ 일 때, p^2+q^2 의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.) [4점]

22. 수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 할 때, 두 수열 $\{a_n\}$ 과 $\{S_n\}$ 은 다음 조건을 만족시킨다.

(가) 모든 자연수
$$n$$
에 대하여
$$a_n \times a_{n+1} = \left(S_{n+1}\right)^2 - \left(S_n\right)^2$$
이다.

(나)
$$\sum_{k=1}^{7} S_k = 12$$

$$\left| \frac{a_5}{a_3} \right| = 2$$
일 때, $\sum_{k=1}^7 \left| a_k + S_{k+1} \right|$ 의 값을 구하시오. [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
- 이어서, **「선택과목(미적분)」** 문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.

제 2 교시

수학 영역(미적분)

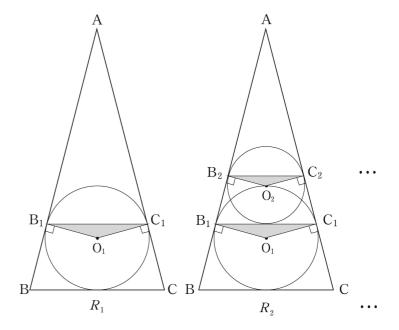
Epsilon

성균관대학교 수학교육과 Epsilon 주관

5지선다형

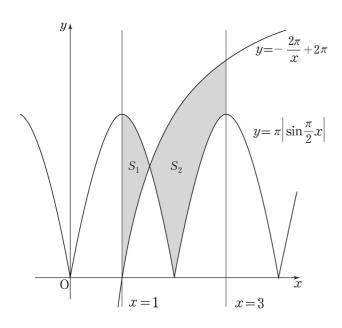
23.
$$\lim_{n\to\infty} \frac{8n^4 + 3n^3 + 8}{(2n^2 + 4)(2n + 1)^2}$$
의 값은? [2점]

- ② 2
- 3 3
- 24. 수열 $\{a_n\}$ 에 대하여 $\sum_{n=1}^{\infty} \left(\frac{a_n}{n} \frac{2n^2}{n^2 + 2n}\right) = 4$ 일 때,

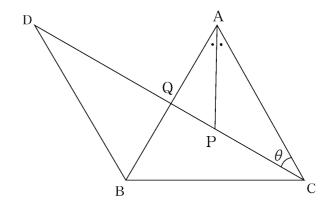

$$\lim_{n\to\infty}\frac{6a_n+4n}{a_n+2n}$$
의 값은? [3점]

- ① 3 ② 4 ③ 5 ④ 6
- ⑤ 7

25. 곡선 $ye^{kx} + \ln(y+1) = e$ 위의 점 (0, e-1)에서의 접선의 기울기가 -1일 때, 상수 k의 값은? [3점]


- ① $\frac{1}{e^2 e}$ ② $\frac{1}{e}$ ③ $\frac{e+1}{e^2 e}$ ④ $\frac{e^2 + 1}{e^2 + e}$ ⑤ $\frac{e^2 + 1}{e^2 e}$

26. 그림과 같이 $\overline{AB} = \overline{AC} = 10$, $\overline{BC} = 5$ 인 이등변삼각형 ABC의 내접원의 중심을 O_1 , 점 O_1 에서 선분 AB와 선분 AC 에 내린 수선의 발을 각각 B_1 , C_1 이라 할 때, 삼각형 $O_1B_1C_1$ 에 색칠하여 얻은 그림을 R_1 이라 하자. 이등변삼각형 AB_1C_1 의 내접원의 중심을 O_2 , 점 O_2 에서 선분 AB_1 과 선분 AC_1 에 내린 수선의 발을 각각 B_2 , C_2 라 할 때, 삼각형 $O_2B_2C_2$ 에 색칠하여 얻은 그림을 R_2 라 하자. 이와 같은 과정을 계속하여 n번째 얻은 그림 R_n 에 색칠되어 있는 모든 삼각형의 넓이의 합을 S_n 이라 할 때, $\lim_{n \to \infty} S_n$ 의 값은? [3점]


① $\frac{2\sqrt{15}}{7}$ ② $\frac{9\sqrt{15}}{28}$ ③ $\frac{5\sqrt{15}}{14}$ ④ $\frac{3\sqrt{15}}{7}$ ⑤ $\frac{15\sqrt{15}}{28}$

27. 두 곡선 $y = -\frac{2\pi}{x} + 2\pi$, $y = \pi \left| \sin \frac{\pi}{2} x \right|$ 와 직선 x = 1로 둘러싸인 부분의 넓이를 S_1 , 두 곡선 $y=-\frac{2\pi}{x}+2\pi$, $y=\pi\left|\sin\frac{\pi}{2}x\right|$ 와 직선 x=3으로 둘러싸인 부분의 넓이를 S_2 라 하자. $S_2 - S_1$ 의 값은? [3점]

- ① $(4-4\ln 3)\pi-4$
- ② $(3-2\ln 3)\pi-4$
- $3 (3-2\ln 3)\pi 2$
- (4) $(4-2\ln 3)\pi 4$ (5) $(4-2\ln 3)\pi 2$

28. 그림과 같이 길이가 4인 선분 BC를 한 변으로 하고 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC가 있다. $\angle BAC$ 의 이등분선 위에 $\overline{AP} = \overline{CP}$ 가 되도록 점 $P = \overline{CP}$ 잡고 선분 CP의 연장선과 선분 AB가 만나는 점을 Q라 하자. 점 B를 지나고 직선 AC 와 평행한 직선과 선분 CP 의 연장선의 교점을 D라 하자. $\angle ACP = \theta$ 일 때, 선분 PQ 의 길이를 $f(\theta)$, 삼각형 BDQ 의 넓이를 $g(\theta)$ 라 하자. $\lim_{\theta \to 0+} \frac{f(\theta)}{g(\theta)}$ 의 값은? (단, $0 < \theta < \frac{\pi}{4}$) [4점]

- ① $\frac{1}{16}$ ② $\frac{1}{8}$ ③ $\frac{1}{4}$ ④ $\frac{1}{2}$

단답형

29. 실수 전체의 집합에서 미분가능한 함수 f(x)가 다음 조건을 만족시킨다.

(가)
$$0 \le x < 1$$
일 때, $f(x) = (x^2 - 3x + 3)e^x - 3$ 이다.

(나) 모든 실수 x에 대하여

f(x+2) = -f(x) + f(5)

1 < x < 2 에서 $f'(x) \ge 0$ 일 때, $\int_0^{14} f(x) dx = ae - b$ 이다. a+b의 값을 구하시오. (단, a, b는 유리수이다.) [4점]

30. 양수 a 에 대하여 함수 $f(x) = x^2 e^{-a|x|+2}$ 가 있다. 실수 t 에 대하여 함수

$$y = |f(x) + tf'(t) - f(t) - xf'(t)|$$

가 미분가능하지 않은 점의 개수를 g(t)라 할 때, 함수 g(t)가 다음 조건을 만족시킨다.

방정식 g(t)=0을 만족시키는 모든 t의 값 중 가장 큰 값을 t_1 , 두 번째로 작은 값을 t_2 라 할 때, $t_1+t_2=\sqrt{2} \ \, \text{이다}.$

함수 g(t)가 불연속인 점의 개수를 n이라 할 때, $(a+n)\times\sum_{k=1}^6g(2^{k-2})$ 의 값을 구하시오. (단, $g(6)\neq g(7)$ 이고, $\lim_{k\to\infty}f(x)=0$ 이다.) [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.

※ 시험이 시작되기 전까지 표지를 넘기지 마시오.