

┃ 한성은 (POSTECH 수학과)

5A ACADEMY, 일산종로학원

내신대비용으로 모은 것이지만, 수능 대비로도 한 번쯤 다뤄볼만 합니다. 수열의 극한은 원래 증명이 되지 않는 명제가 많습니다. 너무 따지고 들지 마세요.

유튜브〈한성은〉놀러오세용. N제를 출간했습니다. 사주세요.

I CCL

- 일부 명제는 내신 시험지 등에서 아이디어를 발췌한 것입니다.
- 허락 없이 문제를 쓰실 수 있지만, 출처를 반드시 표시해 주세요.
- 자신이 저작자라는 주장을 하지 말아 주세요.

수열 극한의 진위판정

- ① 수렴성의 연산 : 수렴하는 것끼리 더하기, 빼기, 곱하기는 되고 나누기는 조심
- 2 부정형의 이해 : $\frac{\infty}{\infty}$ 나 $\infty \infty$ 꼴은 어떻게 될지 몰라.
- ③ 샌드위치 정리 : 모든 n에 대하여 $a_n < b_n$ 이면 $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$
- ④ 반례 찾기 : 일단 대충 0, 1, 0, 1, 0, 1, … 이런 것들로..?
- $\mathbf{1}$. $\lim_{n \to \infty} a_{2n} = \alpha$ 이면 $\lim_{n \to \infty} a_n = \alpha$ 이다.
- **2.** $\lim_{n\to\infty} a_n = \alpha$ 이면 $\lim_{n\to\infty} a_{2n} = \alpha$ 이다.
- **3.** $\lim_{n\to\infty}a_{n+1}=\alpha$ 이면 $\lim_{n\to\infty}a_{2n}=\lim_{n\to\infty}a_{2n-1}$ 이다.
- **4.** $\lim_{n\to\infty} a_{2n-1} = \lim_{n\to\infty} a_{2n} = \alpha$ 이면 $\lim_{n\to\infty} a_{3n} = \alpha$ 이다.
- **5.** $\lim_{n\to\infty} a_{3n} = \alpha$, $\lim_{n\to\infty} a_{3n+1} = \alpha$, $\lim_{n\to\infty} a_{3n+2} = \alpha$ 이면 $\lim_{n\to\infty} a_n = \alpha$ 이다.
- **6.**두 수열 $\{a_n\}$, $\{b_n\}$ 이 모두 수렴하면 수열 $\{a_n+b_n\}$ 은 수렴한다.
- **7.** 두 수열 $\{a_n\}$, $\{b_n\}$ 이 모두 수렴하면 수열 $\{a_nb_n\}$ 은 수렴한다.
- **8.** 두 수열 $\{a_n\}$, $\{b_n\}$ 이 모두 수렴하면 수열 $\left\{\frac{a_n}{b_n}\right\}$ 은 수렴한다. (단, $b_n \neq 0$)
- **9.** 두 수열 $\{a_n\},\ \left\{\frac{b_n}{a_n}\right\}$ 이 모두 수렴하면 수열 $\{b_n\}$ 은 수렴한다. (단, $a_n\neq 0$)
- **10.** 두 수열 $\{a_n\}$, $\{a_nb_n\}$ 이 모두 수렴하면 수열 $\{b_n\}$ 은 수렴한다.
- **11.** $\lim_{n\to\infty} a_n b_n = 1$ 이고 $\lim_{n\to\infty} a_n = 1$ 이면 $\lim_{n\to\infty} b_n = 1$ 이다.

- **12.** $\lim_{n\to\infty}a_nb_n=0$ 이면 $\lim_{n\to\infty}a_n=0$ 또는 $\lim_{n\to\infty}b_n=0$ 이다.
- **13.** 두 수열 $\{a_n\}$, $\{b_n\}$ 이 수렴하고 $\lim_{n\to\infty}a_nb_n=0$ 이면 $\lim_{n\to\infty}a_n=0$ 또는 $\lim_{n\to\infty}b_n=0$ 이다.
- **14.** 두 수열 $\{a_n\}$, $\{b_n\}$ 이 각각 발산하면 수열 $\{a_nb_n\}$ 도 발산한다.
- $\mathbf{15.}$ 수열 $\{a_n+b_n\}$ 이 수렴하면 수열 $\{a_n\}$ 또는 수열 $\{b_n\}$ 이 수렴한다.
- **16.** 수열 $\{a_nb_n\}$ 이 발산하면 수열 $\{a_n\}$ 또는 수열 $\{b_n\}$ 이 발산한다.
- **17.** 수열 $\{a_nb_n\}$ 이 수렴하면 두 수열 $\{a_n\}$, $\{b_n\}$ 중 적어도 하나는 수렴한다.
- **18.** 수열 $\left\{ \frac{a_n}{b_n} \right\}$ 이 발산하면 수열 $\left\{ a_n \right\}$ 또는 수열 $\left\{ b_n \right\}$ 이 발산한다.
- **19.** 수열 $\{a_n\}$ 이 수렴하고 수열 $\{b_n\}$ 이 발산하면 수열 $\{a_nb_n\}$ 이 발산한다.
- **20.** 수열 $\{a_n\}$ 이 0이 아닌 값으로 수렴하고 수열 $\{b_n\}$ 이 발산하면 수열 $\{a_nb_n\}$ 이 발산한다.
- **21.** 두 수열 $\{a_n\}$, $\{a_n-b_n\}$ 이 같은 값으로 수렴하면 수열 $\left\{\frac{b_n}{a_n}\right\}$ 은 0으로 수렴한다.
- **22.** $\lim_{n\to\infty}a_n=\alpha$ 이면 $\lim_{n\to\infty}a_n^{\ 2}=\alpha^2$ 이다.
- **23.** 수열 $\left\{a_{n}^{\;2}\right\}$ 이 수렴하면 수열 $\left\{a_{n}\right\}$ 도 수렴한다.
- **24.** $\lim_{n\to\infty}a_n^2=\alpha$ 이면 $\lim_{n\to\infty}a_n=\sqrt{\alpha}$ 이다. (단, $\alpha>0$)
- **25.** 수열 $\{|a_n|\}$ 이 수렴하면 $\{a_n\}$ 도 수렴한다.
- **26.** 모든 자연수 n에 대하여 $a_{2n-1}a_{2n}=0$ 이면 $\lim_{n\to\infty}a_n=0$ 이다.
- **27.** $\lim_{n\to\infty} |a_n| = 0$ 이면 $\lim_{n\to\infty} a_n = 0$ 이다.

- **28.** $\lim_{n\to\infty} a_n = 0$ 이면 $\lim_{n\to\infty} |a_n| = 0$ 이다.
- **29.** $\lim_{n\to\infty} a_n^2 = 0$ 이면 $\lim_{n\to\infty} a_n = 0$ 이다.
- **30.** $\lim_{n\to\infty}a_n^2=1$ 이면 $\lim_{n\to\infty}a_n=1$ 또는 $\lim_{n\to\infty}a_n=-1$ 이다.
- **31.** 모든 자연수 n에 대하여 $|a_n| \le M$ (상수)이고 $\lim_{n \to \infty} b_n = 0$ 이면 $\lim_{n \to \infty} a_n b_n = 0$ 이다.
- **32.** $\lim_{n\to\infty}a_n=-\infty$, $\lim_{n\to\infty}b_n=\infty$ 이면 $\lim_{n\to\infty}a_nb_n=-\infty$ 이다.
- **33.** $\lim_{n\to\infty}a_n=\infty$, $\lim_{n\to\infty}b_n=0$ 이면 $\lim_{n\to\infty}a_nb_n=0$ 이다.
- **34.** $\lim_{n\to\infty}a_n=\infty$, 모든 자연수 n에 대하여 $b_n>0$ 이면 $\lim_{n\to\infty}a_nb_n=\infty$ 이다.
- **35.** $\lim_{n\to\infty} a_n = 0$, $\lim_{n\to\infty} a_n b_n = 1$ 이면 수열 $\{b_n\}$ 은 발산한다.
- **36.** $\lim_{n\to\infty}a_n=0,\ \lim_{n\to\infty}a_nb_n=1$ 이면 $\lim_{n\to\infty}b_n=\infty$ 이다.
- **37.** $\lim_{n\to\infty}a_n=0$, $\lim_{n\to\infty}a_nb_n=1$ 이면 $\lim_{n\to\infty}b_n=\infty$ 이거나 $\lim_{n\to\infty}b_n=-\infty$ 이다.
- **38.** $\lim_{n\to\infty}a_n=\infty$, $\lim_{n\to\infty}b_n=\infty$ 이면 수열 $\left\{a_n-b_n\right\}$ 은 수렴한다.
- **39.** $\lim_{n\to\infty}(a_n-b_n)=lpha$ 이고 $\lim_{n\to\infty}b_n=\infty$ 이면 $\lim_{n\to\infty}a_n=\infty$ 이다.
- **40.** $\lim_{n\to\infty}a_n=\infty$, $\lim_{n\to\infty}(a_n-b_n)=\alpha$ 이면 $\lim_{n\to\infty}\frac{b_n}{a_n}=1$ 이다.
- **41.** $\lim_{n\to\infty}\frac{b_n}{a_n}=1$ 이면 $\lim_{n\to\infty}(a_n-b_n)$ 가 수렴한다.
- **42.** $\lim_{n\to\infty} \frac{a_n}{n} = 0$ 이면 수열 $\{a_n\}$ 은 수렴한다.
- **43.** 수렴하는 두 수열 $\{a_n\}$, $\{b_n\}$ 이 모든 자연수 n에서 $a_n < b_n$ 이면 $\lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n$ 이다.

- **44.** 모든 자연수 n에 대하여 $a_n < c_n < b_n$ 이고 $\lim_{n \to \infty} (b_n a_n) = 0$ 이면 수열 $\{c_n\}$ 은 수렴한다.
- **45.** 모든 자연수 n에 대하여 $0 < a_n < b_n$ 이고 수열 $\{b_n\}$ 이 수렴하면 수열 $\{a_n\}$ 도 수렴한다.
- **46.** 모든 자연수 n에 대하여 $0 < a_n < 1$ 이면 $\lim_{n \to \infty} (a_1 a_2 \cdots a_n) = 0$ 이다.
- **47.** 모든 자연수 n에 대하여 $1 < a_n$ 이면 $\lim_{n \to \infty} (a_1 a_2 \cdots a_n) = \infty$ 이다.
- **48.** 모든 자연수 n에 대하여 $a_n < 0 < b_n$ 이고 $\lim_{n \to \infty} (a_n b_n) = 0$ 이면 $\lim_{n \to \infty} a_n = 0$ 이다.
- **49.** 모든 자연수 n에 대하여 $0 < a_{n+1} < \frac{1}{2}a_n$ 이면 $\lim_{n \to \infty} a_n = 0$ 이다.
- **50.** 모든 자연수 n에 대하여 $a_n > 0$ 이고 $a_{n+1} > \frac{100}{99} a_n$ 이면 $\lim_{n \to \infty} a_n = \infty$ 이다.
- **51.** 수열 $\{a_n\}$ 이 수렴하고 $|b_n| < |c_n|$ 일 때 수열 $\{a_n \, c_n\}$ 이 수렴하면 수열 $\{a_n \, b_n\}$ 도 수렴한다.
- **52.** 모든 자연수 n에 대하여 $a_n < 0 < b_n$, $\lim_{n \to \infty} a_n b_n = 0$ 이고 $\lim_{n \to \infty} a_n \neq 0$ 이면 $\lim_{n \to \infty} b_n = 0$ 이다.

급수의 극한 진위판정

- ② 급수의 수렴과 수열의 수렴 : $\sum_{n=1}^{\infty} a_n$ 이 수렴하면 $\lim_{n\to\infty} a_n = 0$ 이다. 역은 ㄴㄴ
- ③ p급수 : $\sum_{n=1}^{\infty} x^{p}$ 는 p < -1이면 수렴하고, $p \ge -1$ 이면 발산한다.
- ④ 등비급수가 수렴하는 범위 : $\sum_{n=1}^{\infty} ar^{n-1}$ 은 a=0이거나 -1 < r < 1이면 수렴한다.
- **53.** $\lim_{n\to\infty} a_n = 0$ 이면 $\sum_{n=1}^{\infty} a_n$ 이 수렴한다.
- **54.** $\sum_{n=1}^{\infty} a_n$ 과 $\sum_{n=1}^{\infty} b_n$ 이 모두 수렴하면 $\sum_{n=1}^{\infty} (a_n + b_n)$ 이 수렴한다.
- **55.** $\sum_{n=1}^{\infty} (a_n + b_n)$ 과 $\sum_{n=1}^{\infty} (a_n b_n)$ 이 모두 수렴하면 $\sum_{n=1}^{\infty} a_n$ 이 수렴한다.
- **56.** $\sum_{n=1}^{\infty} a_n = S$ 이면 $\sum_{n=1}^{\infty} a_{n+1} = S$ 이다.
- **57.** $\lim_{n \to \infty} \sum_{k=1}^{n} a_k = S$ 이면 $\lim_{n \to \infty} \sum_{k=1}^{2n} a_k = S$ 이다.
- **58.** $\sum_{n=1}^{\infty} a_n = S$ 이면 $\sum_{n=1}^{\infty} a_{2n} = S$ 이다.
- **59.** $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ 이 각각 수렴하면, $\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n$ 이다.
- **60.** $\sum_{n=1}^{\infty} a_{2n-1} = \alpha$, $\sum_{n=1}^{\infty} a_{2n} = \beta$ 이면 $\sum_{n=1}^{\infty} a_n = \alpha + \beta$ 이다.
- **61.** $\sum_{n=1}^{\infty} a_n = \alpha$, $\sum_{n=1}^{\infty} b_n = \beta$ 이고 $\alpha > \beta$ 이면 $\lim_{n \to \infty} a_n > \lim_{n \to \infty} b_n$ 이다.
- **62.** $\sum_{n=1}^{\infty} a_n$ 이 수렴하면 $\sum_{n=1}^{\infty} (a_n 1)$ 은 발산한다.
- **63.** $\sum_{n=1}^{\infty} a_n b_n$ 이 수렴하고 $\lim_{n\to\infty} a_n = 1$ 이면 $\lim_{n\to\infty} b_n = 0$ 이다.
- **64.** $\sum\limits_{n=1}^{\infty}a_nb_n$ 이 수렴하고 수열 $\left\{a_n\right\}$ 이 발산하면 $\lim\limits_{n o\infty}b_n=0$ 이다.

- **65.** 모든 자연수 n에 대하여 $a_n > b_n$ 이고 $\sum_{n=1}^\infty a_n = \alpha$, $\sum_{n=1}^\infty b_n = \beta$ 이면 $\alpha > \beta$ 이다.
- **66.** 모든 자연수 n에 대하여 $a_n>b_n$ 이고 $\sum_{n=1}^\infty a_n=\alpha$, $\sum_{n=1}^\infty b_n=\beta$ 이면 $\alpha\geq\beta$ 이다.
- **67.** 두 수열 $\{a_n\}$, $\{b_n\}$ 이 $b_n = a_{n+1} a_n$ 일 때, $\{a_n\}$ 이 수렴하면 $\sum_{n=1}^{\infty} b_n$ 이 수렴한다.
- **68.** 두 수열 $\{a_n\}$, $\{b_n\}$ 이 $b_n=a_{n+1}-a_n$ 일 때, $\sum_{n=1}^{\infty}a_n$ 이 수렴하면 $\{b_n\}$ 이 수렴한다.
- **69.** $\sum_{n=1}^{\infty} a_n$ 과 $\sum_{n=1}^{\infty} b_n$ 이 모두 발산하면 $\sum_{n=1}^{\infty} a_n b_n$ 도 발산한다.
- **70.** $\sum_{n=1}^{\infty} a_n$ 이 수렴하고 $\sum_{n=1}^{\infty} b_n$ 이 발산하면 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 은 수렴한다.
- **71.** $\sum_{n=1}^{\infty} (a_n + a_{n+1})$ 이 수렴하면 $\sum_{n=1}^{\infty} a_n$ 이 수렴한다.
- **72.** $\sum_{n=1}^{\infty} a_n$ 이 수렴하면 $\sum_{n=1}^{\infty} (a_n a_{n+1})$ 도 수렴한다.
- **73.** $\sum\limits_{n=1}^{\infty}a_{n}$ 이 수렴하면 $\sum\limits_{n=1}^{\infty}a_{2n}$ 이 수렴한다.
- **74.** $\sum_{n=1}^{\infty} a_{2n}$ 이 수렴하면 $\sum_{n=1}^{\infty} a_n$ 이 수렴한다.
- **75.** $\sum_{n=1}^{\infty} a_n$ 이 수렴하면 $\sum_{n=1}^{\infty} a_n^2$ 이 수렴한다.
- **76.** $\sum_{n=1}^{\infty} a_n^2$ 이 수렴하면 $\sum_{n=1}^{\infty} a_n$ 이 수렴한다.
- **77.** $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ 이 모두 수렴하면 $\sum_{n=1}^{\infty} a_n b_n$ 이 수렴한다.
- **78.** $\sum_{n=1}^{\infty} (a_{n+1} a_n)$ 이 수렴하면 수열 $\{a_n\}$ 은 수렴한다.
- **79.** $\sum_{n=1}^{\infty} a_n$ 이 수렴하면 $\sum_{n=1}^{\infty} a_{n+1}$ 도 수렴한다.
- **80.** 모든 자연수 n에 대하여 $0 < a_n < b_n$ 이고 $\sum_{n=1}^{\infty} b_n$ 이 수렴하면 $\sum_{n=1}^{\infty} a_n$ 이 수렴한다.

- **81.** $\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} 2a_n = \alpha$ 이면 $\lim_{n \to \infty} b_n = 2$ 이다.
- **82.** 등비수열 $\{a_n\}$ 에 대하여 $\sum_{n=1}^{\infty}a_n$ 이 수렴하면 $\sum_{n=1}^{\infty}2^na_n$ 도 수렴한다.
- **83.** 등비수열 $\{a_n\}$ 에 대하여 $\sum_{n=1}^{\infty} a_n$ 이 수렴하면 $\sum_{n=1}^{\infty} \frac{a_n}{2^n}$ 도 수렴한다.
- **84.** 등비수열 $\{a_n\}$ 에 대하여 $\sum_{n=1}^{\infty} a_n$ 이 수렴하면 $\sum_{n=1}^{\infty} a_{2n}$ 도 수렴한다.
- **85.** 등비수열 $\{a_n\}$ 에 대하여 $\sum_{n=1}^{\infty} a_n$ 이 발산하면 $\sum_{n=1}^{\infty} a_{2n}$ 도 발산한다.
- **86.** 등비수열 $\{a_n\}$ 에 대하여 $\sum_{n=1}^{\infty} a_n$ 이 수렴하면 $\sum_{n=1}^{\infty} a_{3n}$ 도 수렴한다.
- **87.** 등비수열 $\{a_n\}$ 에 대하여 $\sum_{n=1}^{\infty} a_{3n}$ 이 수렴하면 $\sum_{n=1}^{\infty} a_n$ 도 수렴한다.
- $oldsymbol{88.}$ 등비수열 $\{a_n\}$ 에 대하여 $\{a_n\}$ 이 발산하면 $\{a_{2n}\}$ 도 발산한다.
- **89.** 두 등비수열 $\{a_n\}$, $\{b_n\}$ 에 대하여, $\sum_{n=1}^{\infty}a_n$, $\sum_{n=1}^{\infty}b_n$ 이 모두 수렴하면 $\sum_{n=1}^{\infty}a_nb_n$ 도 수렴한다.
- **90.** 두 등비수열 $\{a_n\}$, $\{b_n\}$ 에 대하여, $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ 이 모두 수렴하면 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 도 수렴한다.
- **91.** 등비급수 $\sum_{n=1}^{\infty} a_n^3$, $\sum_{n=1}^{\infty} b_n^3$ 이 수렴하면 $\sum_{n=1}^{\infty} (a_n + b_n)$ 은 수렴한다.
- **92.** 두 등비수열 $\{a_n\}$, $\{b_n\}$ 에 대하여, $\sum_{n=1}^{\infty} a_n b_n$ 이 수렴하면 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ 중 하나는 수렴한다.
- **93.** 두 등비수열 $\{a_n\}$, $\{b_n\}$ 에 대하여, $\sum_{n=1}^{\infty}(a_n-b_n)=0$ 이면 $\{a_n\}$ 과 $\{b_n\}$ 의 공비는 서로 같다.

〈정답표〉

문항	정답								
01	거짓	02	참	03	참	04	참	05	참
06	참	07	참	08	거짓	09	참	10	거짓
11	참	12	거짓	13	참	14	거짓	15	거짓
16	참	17	거짓	18	거짓	19	거짓	20	참
21	거짓	22	참	23	거짓	24	거짓	25	거짓
26	거짓	27	참	28	참	29	참	30	거짓
31	참	32	참	33	거짓	34	거짓	35	참
36	거짓	37	거짓	38	거짓	39	참	40	참
41	거짓	42	거짓	43	거짓	44	거짓	45	거짓
46	거짓	47	거짓	48	참	49	참	50	참
51	거짓	52	거짓	53	거짓	54	참	55	참
56	거짓	57	참	58	거짓	59	거짓	60	참
61	거짓	62	참	63	참	64	거짓	65	참
66	참	67	참	68	참	69	거짓	70	거짓
71	거짓	72	참	73	거짓	74	거짓	75	거짓
76	거짓	77	거짓	78	참	79	참	80	참
81	거짓	82	거짓	83	참	84	참	85	참
86	참	87	참	88	거짓	89	참	90	거짓
91	참	92	참	93	거짓				

COMMENT 12

 $\lim_{n \to \infty} a_n$ 과 $\lim_{n \to \infty} b_n$ 이 존재하는 것이 이 명제의 전제가 아니냐는 좋은 의견. 너무 파고들지 말자. 출제자는 의외로 별 생각이 없다. 생각할 수록 손해.

COMMENT 27

 $-|a_n| \le a_n \le |a_n|$ 에서 샌드위치.

COMMENT 28

증명은 잘 안 됩니다. (입실론 어쩌고 필요)

COMMENT 29

증명은 잘 안 됩니다.

COMMENT 31

 $-Mb_n \le a_n b_n \le Mb_n$ 에서 샌드위치

COMMENT 46

반례 : $\left(\frac{1}{2}\right)^{\frac{1}{n(n+1)}}$

COMMENT 47

반례 : $2^{\frac{1}{n(n+1)}}$

COMMENT 48

 $a_n - b_n < a_n < 0$ 에서 샌드위치

COMMENT 49

 $a_2 < rac{1}{2}a_1$, $a_3 < rac{1}{2}a_2$, ···, $a_n < rac{1}{2}a_{n-1}$ 을 변변 곱하면 $0 < a_n < \left(rac{1}{2}
ight)^{n-1}a_1$ 이다.

COMMENT 50

$$a_n > a_1 \left(\frac{100}{99}\right)^{n-1}$$

COMMENT 52

반례 : $\{a_n\}$ 은 -1, $-\frac{1}{2}$, -1, $-\frac{1}{4}$, -1, $-\frac{1}{6}$, -1, $-\frac{1}{8}$, \cdots , $\{b_n\}$ 은 $\frac{1}{1}$, 1, $\frac{1}{3}$, 1, $\frac{1}{5}$, 1, $\frac{1}{7}$, 1, \cdots 으로.

COMMENT 73

반례 : $\left\{a_n\right\}$: -1, 1, $-\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$, $-\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{3}}$, \cdots

COMMENT 75

반례 : $\{a_n\}$: -1, 1, $-\frac{1}{2}$, $\frac{1}{2}$, $-\frac{1}{3}$, $\frac{1}{3}$, ...

COMMENT 76

반례 : $a_n = \frac{1}{n}$