by. orbi.kr IMIN 943544 무단 전제 및 복제를 금합니다.

1단원
()의 증거 -해안선 모양의 유사성 -지질 구조의 연속성 -고생물 화석 분포의 연속성 L고생물 화석; (), () -빙하의 흔적과 이동 방향
()의 한계: 원동력을 제대로 설명하지 못함.
맨틀 대류설: 맨틀의 ()이 부분적 열의 차이로 인해 맨틀의 열대류가 발생한다. ㄴ한계;
해저 지형의 탐사는 음향 측심법을 주로 이용하는데 이 때 수심 d는 ()이다
해저 확장설: ()에서 새로운 해양 지각이 형성되고 확장된다. ㄴ증거:
(): 지구의 표면은 다양한 판으로 구성되어 있으며 이들의 상대적인 운동에 의해지질 현상이 발생한다. 노변환단층, 섭입대 주변의 진원의 분포를 통해 알 수 있다.
(): 암석에 기록되어 있는 과거의 지구 자기 흔적 ()를 이용한 대륙 이동 복원은 ()을 측정해서 알 수 있다. 특히 ()일수록 ()가 크다. (): 나침반 자침의 N극이 수평면과 이루는 각 (): 자북극과 진북면이 이루는 각
지자기의 역전: 지구 자기의 극이 여러 차례 바뀌었음을 알 수 있다. 나극이 현재와 같은 방향으로 배열된 시기는 (), 반대 방향으로 배열된 시기는 ()이다.
해양 지각의 연령은 ()에서 적고 ()에서 많다.

```
초대륙 이동의 순서
: 초대륙 로디니아-(
            )-( )-현재의 대륙 분포
초대륙의 분열과 형성은 주기적으로 반복되며 순서는 아래와 같다.
1. 초대륙 아래의 마그마 활동에 의해 ( )가 형성된다.
    )의 이동에 의해 해령에서 (
                           )이 생성되어 해양이 확장된다.
3. 대륙 주변에서 ( )이 섭입되면서 ( )가 발달한다.
4. 해양 지각의 섭입 속도가 확장 속도보다 빠를 때 해양이 ( )된다.
5. 해양 지각이 모두 섭입되면 해양이 소멸되며 대륙부에 ( )산맥이 생길 수 있다.
6. 초대륙이 형성된다.
발산형 경계란, 두 판이 서로 멀어지는 경계이며 맨틀 물질이 ( )한다.
발산형 경계에서 볼 수 있는 구조는 ( ), ( )이다. 특히 대륙 지역의 (
)가 확장되면서 ( )이 생성된다.
( )지진과 ( )이 잘 일어난다.
수렴형 경계란, 두 판이 서로 가까워지는 경계이며 맨틀 물질이 ( )한다.
수렴형 경계에서 볼 수 있는 구조는 ( ), ( )이다.
섭입하는 구간을 ( )라고 한다.
( )지진과 화산 활동이 잘 일어나지만 대륙판과 ( )이 수렴하는 경우는 화산
활동이 잘 일어나지 않는다.
      )란, 판의 생성과 소멸이 없는 경계로 두 판이 서로 반대 방향으로 움직인다.
      )가 주로 형성되고 ( )지진이 잘 일어난다. ( )은 일어나지
않는다.
판 이동의 원동력은 맨틀 대류로, 이 때 작용하는 힘은 아래와 같다.
1.
2.
3.
열점이란 (
                                            )이다.
대표적인 열점 지대는 ( )이다.
풀룪: (
                                  )
풀룸 구조론: 풀룸에 의한 지각, 판의 구조 운동
                                 )이다.
상승하는 풀룸은 ( ), 하강하는 풀룸은 (
슈퍼 풀룸의 역할은 (
                                 )으로 추정된다.
풀룸 구조론의 의의는 판 구조 운동의 원동력을 해석하는 것이다.
```

현무암질 마그마					
-SiO ₂ 함량이 () 온도가 ()			
LSiO2 함량과 점	성은 (비례/반비례),	유동성은	(비례/반비례)		
	계와 ()에서 ·)이 하강하여		용융 곡선에 미	라라 ()와 (
	경사가 ()	000-10			
-마그마가 굳어서	(), ()과(와) 같은	암석이 만들어진다	} .
-주로 (산성/중성/	'염기성)암이다.				
안산암질 마그마					
	와 유문암질 마그마으	다 중간 정.	도이며 마그마	가 굳어서 (), (
, , , , ,	암석이 만들어진다.				
-주로 (산성/중성/	염기성)임이다.				
유문암질 마그마		,			
_ •) 온도가 (경계에서 주로 생성!	•	고서에 따라	경저 브히 자유 m	느 ㅂㅂ ္ㅇ
등에 의해 생성된다		러고 유요	국산에 따다	결정 군외 작용 또	-근 구군 중당
-생성된 화산체의	•				
-마그마가 굳어서	(), ()과(와) 같은	암석이 만들어진	다.
-주로 (산성/중성/	'염기성)암이다.				
*섭입대에서는 현-	무암질 마그마가 생성	성될 수 (있	다/없다)		
. – –	지표로 분출하여 빠르	르게 냉각된	된 암석		
-결정의 크기가 () (5 711 - L-1
-(), (), ()와 같은 암석이 존	는세인다.
	지하 깊은 곳에서 천	!천히 냉각	되어 굳은 암	벅	
-결정의 크기가 (-(), (), ()와 같은 암석이 존	E 지내하나나
(<i>)</i> , (<i>)</i> , (_^11 & -1.
산성암에 많이 분호)이고
염기성암에 많이 분	문포하는 원소는 ()이다.
산성암으로 갈수록	- 광물의 정출 온도기	} ()		
한반도에 존재하는	· 화성암은 크게 ()에 생성된	! 화산암 지대와 (
)에 생성된 심성	암 지대로 분류할 수	입다.			
화산암 지대에는 () 절리가	발달하며	대표적인 지역	5군데는 아래와	같다.

```
1.
2.
3.
4.
5.
심성암 지대는 ( ) 절리가 발달하며 대표적인 지역 5군데는 아래와 같다.
1.
2.
3.
4.
5.
*백두산 천지의 ( )는 분화구가 함몰되어 생긴 호수이며 한라산 백록담의 ( )는 화산 폭발 과정에서 꼭대기 부분이 날아간 것이다.
```

	부의 힘에 의해 부서 물의 성질이 변하는)를 촉 되고 유속의 감소에	작용	거 (
퇴적암의 종류는 ()과 ()가 있다.	
()은 자갈, 모래 형태의 퇴적암이다.	, 진흙 등이 운반된	년 후 퇴적되고 속성 작용을 거쳐 생성된	<u>!</u>
(): 자갈이 쌓여 만들 (): 진흙이 쌓여 만들 (): 모래가 쌓여 만들 (): 화산재가 쌓여 만	들어진 퇴적암 들어진 퇴적암		
()은 물에 녹아 침전하여 생성된 형태의 퇴적암		산, 산화철, 석회질 등 화학 성분이	
(), (CaSO4+2H2O 등으로 구성되어)가 대표적이며 각각 CaCO3, SiO2, Na	Cl,
()은 생물의 유현	해가 퇴적되어 만들	는어진 퇴적암이다.	
특히 ()은 ()과 () 모두에 해당된다.	
속도의 급감으로 인해 ((): 물이나 바람의 어갈린 구조가 생긴다. (): 얕은 바다나 (): 건조했던 지역)가 면 기 흐름의 방향이 비 호수였던 지형에서		
선상지; (대륙붕: ()

대륙사면: (대륙대: (삼각주: (석호: (사주: ())))
습곡: 지구 내부 에너지에 의해 (장력/횡압력)을 받아 생성된 지질 구조 ㄴ배사: 습곡 구조에서 (볼록/오목)한 부분 ㄴ향사: 습곡 구조에서 (볼록/오목)한 부분	
단층: 지층에 힘이 작용하여 끊어진 구조 ㄴ정단층: (장력/횡압력)에 의해 생겼으며 상반이 하반보다 (위/아래)에 존재한다. ㄴ역단층: (장력/횡압력)에 의해 생겼으며 상반이 하반보다 (위/아래)에 존재한다. ㄴ주향 이동 단층: 힘이 ()방향으로 작용해 두 암반이 스쳐 지나가 ()방향으로만 이동한 형태의 단층	
(): 지층이 연속적으로 쌓이다가 퇴적이 오래 중단되거나 지각 변동이 일어난다시 퇴적되어 지층의 관계가 (연속/불연속)적인 구조 ㄴ(): 상하 지층의 관계가 평행하다. 주로 융기와 침강에 의해 생긴다. ㄴ(): 지층이 지각 변동을 받아 뒤틀린 후 침식 작용이 일어나 부정합면을 경계로 상하 지층의 기울기가 다르다.	ŀ Ō
용기; (ㄴ예시: (침강: (ㄴ예시: ()))
관입: 마그마가 주변 암석이나 지층의 틈을 뚫고 들어가는 것 ㄴ마그마의 밀도는 주변 암석보다 밀도가 (크기/작기) 때문 관입암: 관입한 마그마가 (지하에서 천천히/지표에서 급하게) 식어서 굳어진 암석 ㄴ가장자리의 결정의 크기는 중심부에 비해 (크다/작다) 포획: 마그마가 관입될 때 주변 암석의 일부가 떨어져 나와 마그마 속으로 유입되는 것 ㄴ마그마의 온도가 (높을/낮을) 때나 용융점이 (높을/낮을) 때 잘 일어난다. ㄴ포획암을 이용해 () 의 구성 성분을 연구할 수 있다.	
우리나라의 퇴적암 지형은 ()와 ()에 주로 생성되었고 일부는 ()에 생성된 퇴적암도 존재한다. 우리나라 퇴적암 지형 중 대표적인 것은 아래와 같다 1. 2.	•

```
4.
5.
6.
7.
지사학의 기본 원리란, 지층과 암석의 ( )를 밝히는 것을 기본으로 한다.
동일 과정의 원리란 (
                                               )
지사학의 법칙은 아래와 같이 5가지로 분류할 수 있다.
1. 수평 퇴적의 법칙: 퇴적물이 퇴적될 때 ( )의 영향으로 수평면과 ( )
쌓인다.
                               )에 (
                                         )을 받았음을
ㄴ만약 이 지층이 기울어진 형태로 분포한다면 (
알 수 있다.
2. 지층 누중의 법칙: ( )에 의해 퇴적물이 운반되어 쌓이므로 (
                                          )되지 않은
      )의 지층이 ( )의 지층보다 먼저 퇴적된 것이다.
지층은 (
ㄴ다만 (
        )을 받은 지층에는 적용될 수 없다.
ㄴ지층의 역전된 경우 지층의 상하를 파악하는 방법은 (
      ) 등이다.
        )의 법칙: 최근에 생긴 지층으로 갈수록 동물군은 (
3. 동물군 (
                                       )한 형태로
변화한다.
4. ( )의 법칙: 지하 깊은 곳에서 마그마가 주변의 암석이나 지층의 틈을 뚫고 들어가
생성된 (화성암/변성암)
니특히 주변 암석은 열로 인한 ( )이 일어난다.
      )의 법칙: 매우 긴 퇴적 시간의 단절이 나타나는 상하 두 지층의 관계
5. (
       )을 경계로 위아래 두 지층 사이에는 긴 시간 간격이 나타난다.
ㄴ(
ㄴ특히 암석, 지질구조, 화석군이 크게 달라진다.
*이를 통해서 (
                          )을 알 수 있다.
( ): 지사학의 법칙을 이용해 암석의 생성 시기나 지질학적 사건의 발생
순서를 상대적인 선후 관계로 나타낸 것
지층 대비: 지층을 서로 비교해 지층의 상대적인 선후 관계를 결정한다.
ㄴ암상에 따른 대비: (
                                               )와
같이 짧은 시간 동안 넓게 형성된 지층을 이용하며 비교적 (먼/가까운) 거리에 있는 지층을
비교할 때 사용한다.
ㄴ화석에 의한 대비: (
                                          )
( ): 정확한 생성 시기->(
                                  )를 분석해서 계산한다.
ㄴ모원소의 (
                   )로 생성된 안정한 상태의 원소를 (
한다.
```

반감기: 모원소의 양이 (ㄴ공식:)하는 1	데 걸리는 시간
반감기가 n번 지나면 모원소의 양은 반감기를 T라고 할 때 t와 T의 관계	_ ,	줄어들며 절대연령을 t,)이다.
표준 화석: 지층의 (L생존기간이 (), (한다. L고생대는 (), 중생 시상 화석: ()에 민감)을 추정할 수 있다. L생존기간이 (), 분포 L대표적인 시상화석인 산호는 ()한 환경에서 서식했다.	한 생물의 화석으로 과거에 생가 ()인 생물의)가 많아야 생대는 () 물이 살던 시기의 (
), (), (), 빙하 코어 등이 있는데	
빙하 코어의 산소의 동위 원소인 1 따뜻할 때는 빙하 코어의 산소 동위 산소 동위 원소비가 (낮다/높다) ㄴ해양 생물 화석의 경우 (리 원소비가 (높고/낮고) 기온이	추울 때는 빙하 코어의
지질시대는 아래와 같다. ()->()->()->()
선캄브리아대의 환경은 생물의 종류)가 대표적이다. 또한 존재 확인을 통해 일부 지역은 한량	기후는 전반적으로 (활동에 의한 화석인 ()했으나 빙하 퇴적물의
고생대에 지각 변동에 의해 ()의 증가로 ()이 환경에서도 생물이 활발함과 더불어)한 기후를 보였다.	(가) 형성되어 ()이 차단되어 해양
중생대에는 ()이 번성 지속되었다.	했으며 빙하기가 (있는/없는)	()한 기후가
신생대에는 빙하기와 ()가 반복되었다.	

```
고기압: 중심부에 ( ) 기류가 생겨 북반구의 지상에서 바람이 ( ) 방향으로
불어나간다.
ㄴ날씨가 (
                )
저기압: 중심부에 ( ) 기류가 생겨 북반구의 지상에서 바람이 ( ) 방향으로
불어 들어간다.
ㄴ( )에 의해 구름이 만들어진다.
기단: 공기가 오랫동안 머물러 있으면 공기의 온도와 습도는 지표면의 성질과 비슷해져 넓은
지역에 거쳐 ( ) 방향으로 기온과 습도가 비슷하게 형성된 큰 공기 덩어리
             ), (
ㄴ습도에 따라: (
L온도에 따라: ( ), ( ), (
시베리아 기단은 ( )에 우리나라에 주로 영향을 주며 (한랭습윤/한랭건조)한 성질을
                    )과 같은 기상 현상을 불러일으킨다.
지니고 있다. 주로 (
             ), (
지니고 있다. 주도 ( 기정 연정글 골드
오호츠크해 기단은 ( )에 우리나라에 주로 영향을 주며
(한랭습윤/고온다습)한 성질을 지니고 있다. 특히 푄 현상이라고도 하는 (
)을 불러일으킨다.
북태평양 기단은 ( )에 우리나라에 주로 영향을 주며 ( )한 성질을
             ), ( )과 같은 기상 현상을
지니고 있다. 주로 (
불러일으킨다.
         ), ( )에 우리나라에 주로 영향을 주며
양쯔강 기단은 (
(온난건조/한랭건조/온난습윤)한 성질을 지니고 있다.
한랭한 기단의 변질에 의해 우리나라에는 ( ), ( ) 현상이 일어날 수 있다.

      나차고 건조한 기단이 바다를 거쳐 (
      )되어 (팽창/수축)하여 육지에 (
      )을

만든다->(안정/불안정)해지는 과정
온난한 기단의 변질에 의해 우리나라에는 ( ), ( ) 현상이 일어날 수 있다.
ㄴ따뜻한 기단이 바다를 거쳐 북상하면서 (
                         )되어 (팽창/수축)하여 육지에 (
)을 만든다->(안정/불안정)해지는 과정
     ): 성질이 서로 다른 두 기단이 만나서 이루는 경계면
(
   )이 지표와 만나는 선을 전선이라고 한다.
한랭전선은 ( ) 공기가 ( ) 공기를 밀어 올릴 때 생기며 전선면의 기울기가 (
   ), 이동 속도가 (빨라/느려) ( ) 구름을 만든다.
ㄴ강수 구역은 전선 (앞면/뒷면)에서 (좁은/넓은) 지역에 걸쳐 비가 내린다.
온난전선은 ( ) 공기가 ( ) 공기 위로 상승할 때 생기며 전선면의 기울기가 (
 ), 이동 속도가 (빨라/느려) ( ) 구름을 만든다.
느강수 구역은 전선 (앞면/뒷면)에서 (좁은/넓은) 지역에 걸쳐 비가 내린다.
폐색 전선은 ( )의 이동 속도가 ( )보다 빨라 두 전선이 겹쳐 생기며
```

(넓은/좁은) 지역에 걸쳐서 구름이 형성된다.

정체 전선은 두 기단의 세력이 비슷할 때 전선의 이동이 ()하여 한 곳에서 오래 머무르는 전선으로 ()방향으로 길게 형성되어 많은 비를 내린다. 나우리나라의 ()의 경우, ()와 ()의 영향을 받아생기며 강수 구역은 전선의 (북쪽/남쪽)이다.

온난형 폐색 전선은 ()의 특성만 나타나는 형태이고 앞쪽에 (찬/더 찬) 공기가, 뒤쪽에 (찬/더 찬) 공기가 존재해 (앞/뒤) 공기가 (앞/뒤) 공기 밑으로 파고들어서 생기는 구조이다.

한랭형 폐색전선은 ()의 특성만 나타나는 형태이고 앞쪽에 (찬/더 찬) 공기가, 뒤쪽에 (찬/더 찬) 공기가 존재해 (앞/뒤) 공기가 (앞/뒤) 공기 밑으로 파고들어 생기는 구조이다.

ㄴ폐색 전선의 수명은 (길다/짧다)

한랭 전선에 의해 생기는 날씨와 풍속 변화를 서술하면 아래와 같다.

온난 전선에 의해 생기는 날씨와 풍속 변화를 서술하면 아래와 같다.

```
고기압은 ( )에 따라 아래와 같이 구분한다.
정체성 고기압; 중심이 특정 지역에 ( ) 머물며 수축하거나 확장하면서 주위
지역에 영향을 미치는 고기압
ㄴ바람이 (강해서/약해서) (큰/작은) 규모의 기단이 발달한다.
ㄴ우리나라에 영향을 주는 정체성 고기압은 (
                                ), (
                                            )이다.
이동성 고기압: 중심이 이동하는 고기압으로 ( )에서 ( )으로 이동한다.
      )의 전후면에서 발달한다.
ㄴ주로 (
ㄴ규모가 (크며/작으며) ( )에는 대륙성 고기압의 쇠퇴로, ( )에는 해양성
고기압의 쇠퇴로 발생한다.
         ): 하강 기류에 의해 공기가 지표면 부근에 누적되어 상공에 저기압이
형성되어 높이가 높지 않은 형태의 저기압(ex.
         ): 수렴된 공기가 하강해 상층에서 공기가 계속 들어오는 형태의 고기압(ex.
         )
온대 저기압은 ( )에 자주 발생하며 찬 기단과 따뜻한 기단이 만나 형성된 전선에서
형성된다. 온대 저기압의 수명은 아래와 같다.
           )에서 파동에 의해 앞면의 ( )과 뒷면의 (
1. (
)으로 분리된다.
2. 온대 저기압이 발달해서 기상 현상을 일으킨 후 ( )전선이 생성되어 온대
저기압이 약해진다.
온대 저기압의 온난 전선의 앞쪽에는 ( ) 구름에 의해 (넓은/좁은) 지역에 걸쳐
(강한/약한) 비가 내리며 기온이 (오르고/내리고) (남동풍/남서풍/북서풍)이 분다.
온난 전선과 한랭 전선 사이에는 바람의 방향이 ( )로 변하고 날씨는 (
   )며 기압은 (높아지고/낮아지고) 기온은 (오른다/내린다)
한랭 전선의 뒤쪽에는 ( ) 구름이 형성되어 (넓은/좁은) 지역에 걸쳐 (강한/약한)
비가 내리며 기온이 (오르고/내리고) (남동풍/남서풍/북서풍)이 분다.
ㄴ온대 저기압의 남쪽에서 바람의 변화는 (시계/반시계) 방향이고 온대 저기압의 북쪽에서
바람의 변화는 (시계/반시계) 방향이다.
ㄴ온대 저기압의 구름이 존재하는 영역과 강수 구역을 비교하면 강수 구역이 구름의 영역보다
(넓다/좁다)
일기도에서 기압을 표기하는 방향은 1000hPa 미만인 경우 (
       )와 같이 표기하며 1000hPa 이상인 경우는 (
     )와 같이 표기한다.
예제)화살표 뒤에 일기도에서 나타내는 형태의 기압을 작성하시면 됩니다.
990hPa ->
1020hPa ->
973hPa ->
1004hPa ->
```

961hPa -> 1037hPa ->

Tip)기압의 세기가 950hPa 이하인 경우나 1050hPa 이상인 경우는 사실상 존재하지 않으니 헷갈리지 말자.

위성 영상은 가시광선을 이용해 촬영한 영상과 적외선을 이용해 촬영한 영상으로 나뉜다. 가시광선 영상은 밤에 관측할 수 (있다/없다) ㄴ가시광선 영상을 통해 측정할 수 있는 것은 ()가 대표적이다. 적외선 영상은 밤에 관측할 수 (있다/없다) ㄴ적외선 영상을 통해 측정할 수 있는 것은 (), (), (), () 이 의해 관측된다.

*맨 밑 빈 칸에는 온대 저기압을 그려보고 요약정리 해보자.

열대 저기압은 수온이 () 열대 해상에서 발생하며 에너지원은 해수의 ()이다. ㄴ적도에서는 발생이 (가능/불가능)한데 그 이유는 () 때문이다. ㄴ전선을 (동반한다/동반하지 않는다)
태풍의 발생 과정에서 증발한 수증기가 ()되어 단열 (팽창/압축)이 발생하고, 이에 따라 공기의 (수렴/발산)에 따라 ()이 발달하며 풍속이 빨라지게 된다.
생성 초반에는 ()의 영향으로 북서쪽으로, ()을 지나고 나서는 ()의 영향으로 북동쪽으로 이동하며 중심 기압이 () 때 세력이 약해진다.
나전향점을 지나고 나서는 이동 속도가 () 태풍이 육지에 상륙하거나 해수면의 온도가 낮아지면 (), 지표와 마찰이 생겨 풍속이 감소하며 중심기압이 (), ()의 형태로 변하여 소멸한다.
태풍의 중심으로 갈수록 ()가 발달하며 중심부에는 부분적인 ()로
인해 맑은 날씨를 보인다. L다만 중심부 기압은 (), 중심부의 풍속은 () L태풍의 중심에 가까울수록 높고 두꺼운 () 구름이 형성되어 벽 형태의 구조를 이루며 중심에 가까울수록 풍속이 ()
위험 반원: () 방향의 풍향 변화. 태풍 진행 방향의 (오른쪽/왼쪽)
ㄴ이유: 안전 반원: () 방향의 풍향 변화, 태풍 진행 방향의 (왼쪽/오른쪽) ㄴ이유:
우리나라에 영향을 주는 태풍은 늦여름에서 초가을 무렵에 많은데 이는 ()의 세력이 약해졌기 때문이다.
되우: () 기급이 제기기 메이 (아레지(기레지)) () 기급이 HEF라인
L() 기류의 세기가 매우 (약해서/강해서) () 구름이 발달한다. L발달 단계는 () -> () 이다.
우박: () ㄴ적운형 구름에서 주로 발생하며 (상승기류/하강기류)가 발달한다. ㄴ()에 주로 발생한다.
나(좁은/넓은) 지역에서 내리며 구름 내 ()이 오르내리게 되면서 얼음 구조를 형성한다.
폭설은 겨울철에 (대륙성/해양성) (고기압/저기압)이 북서풍의 영향으로 확장되는 과정에서 (가열/냉각)되면서 ()를 공급받으며 불안정해져 일어나는 기상 현상이다.

경우에 따라 ()를 포함한 ()이 우리나라를 통과하면서 발생하기도 한다. 그 외 이상 기상 현상들의 정의와 원인을 적어보자. 한파: 폭염: 국지성 호우: 황사: 중국 지역의 사막에서 ()에 의해 모래먼지가 ()을 타고 동쪽으로 날아와 우리나라의 ()에 의해 천천히 지표에 가라앉으며 영향을 미치는 현상이다. 나주로 ()에 자주 발생한다.

마지막으로, 태풍의 구조와 진행에 대해 그림을 그려보자.

ㄴ()가 심해질 때 더 자주 발생한다.

(): 해수에 녹아 있는 성분 염분: 해수 (100g/1kg)에 녹아 있는 ()의 총량 ㄴ평균값은 약 35psu이다. 표층 해수의 염분 분포는 ()에서 가장 높고 (순으로 염분이 낮다.), (
염분비 일정 법칙: ()
()이 많을수록, ()이 적을수록 ㄴ저기압대인 () 지역은 염분이 (높고/낮고) 지역은 염분이 (높다/낮다) 하천수의 유입에 의해 염분의 차이가 생기기에 대양의 중심투 (높다/낮다)	
수온이 높아지면 기체의 용해도가 (커지고/작아지고) 수온이 (커진다/작아진다) ㄴ이 때 수온이 높아지면 해수에 녹아 있던 기체가 (있다.	낮아지면 기체의 용해도가)됨을 알 수
용존 산소량: (L표층에서 수심이 깊어질수록 용존 산소량이 감소하지만, 심 나타나는데 그 이유는 () 용존 이산화탄소량은 수온이 (높을수록/낮을수록), 염분이 (높	
(커질수록/작아질수록) 증가한다.	
ㄴ이산화탄소는 해수에서 (), (존재한다.) 등의 형태로
	이산화탄소의 농도가
혼합층: 수온이 ()하다. 두께는 위도, 계절에 따라 함)일 때 두꺼워진다. 나이를 통해 (고위도/중위도/저위도), (여름철/겨울철)에 더 나 나표층 해수가 ()의 흡수에 의해 영합 지역은 ()의 흡수량이 적어 혼합층이 절	두꺼움을 알 수 있다. 향을 받기에 ()
수온 약층: ()에 따라 ()이 급격히 보다 이 하고 이 급격히 보다 이 이 급격이 보다 (근/작은) 해수가 분위-아래가 섞이기 어려워 매우 () 층이다. 나고위도로 갈수록 수온 약층이 형성되는 수심이 (깊어진다/약	-포해서 밀도 차이가 존재하므로

ㄴ혼합층과 심해층의 ()을 차단한다.	
심해층: 수온 약층 아래에는 태양 복/ 부피는 최대이다.	나 에너지가 도달하지 않아 수온의 변화가 거의 없으며	
해수의 밀도는 순수한 물의 밀도보다 ㄴ이유:	(크다/작다)	
밀도는 수온이 (높고/낮고) 염분이 (낮 (깊어질수록/얕아질수록) 수온이 (높이 나이를 통해 ()에서 밀 나해수의 밀도는 해수의 (도가 크게 증가함을 알 수 있다.	
수온 염분도에 따라 수온이 (해석할 수 있다.), 염분이 () 해수의 밀도가 높아짐	을
수괴: ()	
	(비례/반비례)하고 수온에 (비례/반비례)하며 아래로 가 (). 또한 오른쪽으로 갈수록 염분이	
ㄴ밀도가 가장 높은 곳은 () 부분이다.	

대기 대순환: (ㄴ원인: 위도별 (규모로 일어나는 다)의 차이와 지구		에 의해 발생하	며
)한 가열에		, , , , , , , , , , , , , , , , , , , ,		·
해들리 순환: 위도 (저기압/고기압)이 형성된다.	(형성되고, 위도 ()에서 발생하며 ²)에서 공기			
ㄴ이 순환대의 지표	(수렴/발산)하는 곳 E면에서는 ()이 분다.			1
나귀노 ()에서 공기가 (수렴)라고 부른다	f.
(저기압/고기압)이 ㄴ이 순환대의 지표	E면에서는 (되고, 위도 ()이 분다.)에서 공기기	가 (상승/하강)히	ॅ ोले
ㄴ()가 위도 () 부근에서 한랭	한 공기와 만니	· 생성된다.	
)에서 공기		-)하여
각 지역에서는 (ㄴ북반구에서 (방향은 (왼쪽/오른)의 방형	해 편향되어 지표면 냥은 (왼쪽/오른쪽),)의
직접 순환: (여기에 해당한다.)에 9	의해 발생한 구조.	(), ()0]
간접 순환: ()이 여기에 해당한	다.)로
	l는 원인은 ()의 분포에 따라 ' 가 ()이디		,	다. 또한 해류	의
나순환 방향은 북빈 방향이다.) 방향, 남	한구에서 ())
열대 순환: ()와 (. 구성되어 있으	_며 특히 (
)는 해주면의 기 아열대 순환: (형성한다.	울기 차이에 의해 ·)과 (병향으로 형성되	어 순환 구조를	<u> </u>

```
아한대 순환: ( )과 ( )의 영향을 받아 해류가 형성되며 (
                               )이기 때문에 규모가 작다.
                       )에서 흐르며 유속이 (빠르다/느리다)
서안 경계류: 대륙의 (
ㄴ( )이기에 수온이 (높고/낮고) 염분이 (높고/낮고) 용존 산소량이 (많고/적고) 영양
역류가 (많으며/적으며) 해류의 밀도가 (크다/작다)
동안 경계류: 대륙의 (
                      )에서 흐르며 유속이 (빠르다/느리다)
ㄴ( )이기에 수온이 (높고/낮고) 염분이 (높고/낮고) 용존 산소량이 (많고/적고) 영양
염류가 (많으며/적으며) 해류의 밀도가 (크다/작다)
표층 해류와 대기 대순환의 역할: 저위도의 (과잉/부족) 에너지를 고위도로 전달해 (
  )를 해소한다.
ㄴ특히 중위도 지역인 위도 38도 부근에서는 에너지 수송량이 (최대/최소)이다.
난류가 흐르는 해안은 기온이 (높은 편/낮은 편)이고 한류가 흐르는 해안은 기온이 (높은
편/낮은 편)이다.
한류와 난류가 만나는 곳을 (
                     )라고 한다.
ㄴ( )의 대표적인 특징은 (
                            )이다.
밀도류: 해수의 밀도가 불균일함 때 밀도가 (큰/작은) 해수는 아래쪽으로, 밀도가 (큰/작은)
해수는 위쪽으로 움직이며 발생하는 해류
해수의 밀도는 수온이 (높을수록/낮을수록), 염분이 (높을수록/낮을수록) 커진다.
ㄴ(고위도/저위도) 구역의 해수는 (
                            )이기에 밀도가 높다.
ㄴ고위도로 갈수록 ( )이(가) 감소해서 염분이 (높아진다/낮아진다). 다만
극지방의 경우 (
                               )이기에 염분이 (높은/낮은)
편이다.
ㄴ고위도 해역의 해수는 수온이 ( ), 염분이 ( ) 밀도가 상대적으로
                       ), 염분이 (
크지만 저위도 해역의 해수는 수온이 (
                                      ) 밀도가
상대적으로 작다.
심층 순환: 주위보다 밀도가 큰 해수는 ( )하여 같은 밀도의 해수가 분포하는
수심에 도달한 수 (수평/수직) 방향으로 이동하는 움직임
ㄴ원인: (
                                     )에 따른 밀도 차이
                                      )에서 해수가 (
남극 저층수: 밀도가 가장 큰 해수. 겨울에 남극 대륙 주변 (
     )될 때 해수의 염분이 (증가/감소)하면서 밀도가 증가해 가라앉아 생긴다.
                ) 아래에서 흐르며 (북쪽/남쪽)으로 이동한다.
북대서양 심층수: 북반구 그린란드 부근에서 (융해/냉각)된 표층 해수가 침강해 형성된다.
```

ㄴ(북쪽/남쪽)으로 흐르며 (위치한다.)와 () 사이에
*남극 중층수는 ()와 () 사이에서 흘러	(북쪽/남쪽)으로 이동한다.
심층수는 ()과 ((빠르다/느리다))의 영향을 받아) 이동하며 속도는
표층 순환은 ()의 열을 기보어 밀도가 커진 해수는 이동하면서 표층 해수를 ()의 평형을 맞추어 준다. 나심층수는 ()와 ()를 공급하고, 표층 해수에 (· ()하여 ()로 움직이게 한다. 즉 :)로 지구 전체의 (
용승: 해수면에 바람이 불 때 (방향으로 해수가 이동하여 이를 채우 (): 표층 해수가 외해 올라오는 현상 (): 표층 해수가 연인	우기 위해 심층의 (따뜻한/찬)	내 심층에서 차가운 해수가
적도 용승: 적도를 경계로 ()로 불 때 이 무역풍에 의해 북반구 방향으로, 남반구에서는 해수가 바른적도의 ()가 (발산/-	ł의 ()이 ()에서 ()) 방향으로 이동하며 님층 해수가 상승하는 현상
저기압이나 태풍 중심 부근에서 () 방향으로 해수가 이동 (수렴/발산)하면서 용승 현상이 일어 ㄴ이를 통해 고기압 지역에서는 (통하고, 저기압 중심에서 ()7}
용승은 (있다.)를 통해 확인할 수
용승이 일어나는 지역은 표층 수온여 (안정/불안정)해 ()해진다.	기 (높아/낮아) 기후가 () 날씨가 나타나고, 영양 염류)며, 기층이 -가 (풍부/부족)해 어장이 (

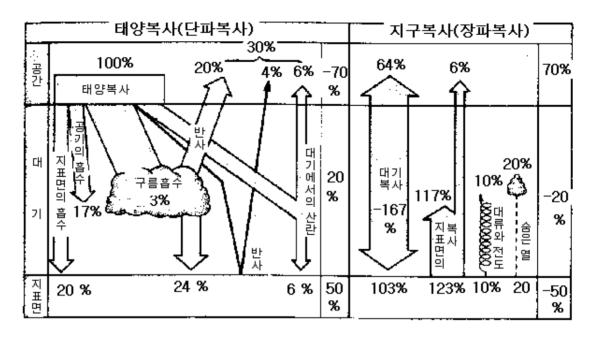
*용승이 잘 일어나는 곳;

평상시에는 무역풍의 영향으로 따뜻한 표층 해수가 (동쪽/서쪽)으로 이동해 페루 연안에서 (용승/침강)이 일어난다. 이 때 적도 부근 태평양은 (동쪽/서쪽)이 (동쪽/서쪽)보다 수온이 낮고 따뜻한 해수층의 두께는 (동쪽/서쪽)이 더 두껍다.

엘니뇨가 발생할 때 무역풍이 (강화/약화)되어 동태평양에서 (상승/하강) 기류가 나타난다.

```
-무역풍의 세기 변화로 적도 태평양 부근에서 바람의 세기의 변화는 ( ) -서태평양 해역의 수온은 (높아진다/낮아진다) -상승 기류의 위치는 (동쪽/서쪽)으로 이동한다. -동태평양 지역의 날씨는 ( ) -서태평양 지역의 날씨는 ( ) -적도 해류의 세기는 (강해진다/약해진다) -적도 반류의 세기는 (강해진다/약해진다) -동태평양 적도 부근의 따뜻한 해수면 두께는 (두꺼워진다/얇아진다) 나여기에 수온약층이 나타나는 깊이는 (깊어진다/얕아진다) -동태평양과 서태평양의 수온 차이는 (커진다/작아진다) -동태평양과 서태평양의 하수면 두께 차이는 (커진다/작아진다)
```

라니냐는 엘니뇨의 반대로, 무역풍의 세기가 (강해져/약해져) 엘니뇨 현상의 반대로 일어난다고 생각하면 된다!


-동태평양 적도 부근 수온은 (높아지고/낮아지고) 해수면 기압은 (높아진다/낮아진다)

*평상시랑 비교할 때, 평상시에서 좀 더 심화된 현상은 라니냐 현상에서 일어나고, 평상시와 반대되는 현상은 엘니뇨에서 일어남을 참고하자.

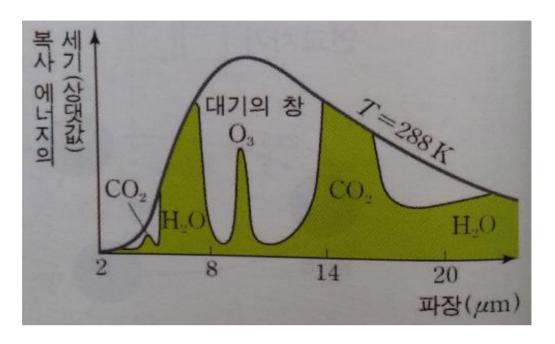
지구 내적 요인에 의한 기후 변화)이(가) 변해 기후가 변하며 (-대륙과 해양의 분포가 변하면 ()로 수송되는 ()이 변해 기온의 차이가 생길 수)에서 (있다. ㄴ이는 ()의 분포와 관련이 있으며 ()에 의해 대륙과 해양이 분포가 변하면 기후가 변할 수 있다. ㄴ대륙과 해양은 비열과 ()이 다르기 때문에 이와 같은 현상이 일어난다. 비열의 경우 ()이 ()보다 커 온도 차이가 (크다/작다) -지표면의 습도, 반사율, 대기 투과율 등에 의해 기후 변화가 발생할 수 있다. ㄴ습도가 높을 때 일교차가 (크다/작다) ㄴ반사율이 증가할수록 평균 기온이 (높아진다/낮아진다) ㄴ대기 투과율이 증가할수록 평균 기온이 (높아진다/낮아진다) *대기 투과율의 경우 ()에 영향을 받는 경우가 많다 지구 외적 요인에 의한 기후 변화 -지구 자전축의 기울기 변화, 세차 운동, 공전 궤도 이심률 (이를 통틀어 밀란코비치 이론이라고 한다.) -지구 자전축의 기울기가 변하면 ()이고 21.5~24.5도 사이에서 변한다. 1. 지구 자전축의 기울기 변화)가 달라지는데, 기울기가 증가하면 ()가 (커져/작아져) 계절 별 연교차가 (증가하고/감소하고) 기울기가 감소하면)가 (커져/작아져) 계절 별 연교차가 (증가한다/감소한다) L기울기가 증가할 때를 예를 들면 여름은 (더 더워지고/덜 더워지고) 겨울은 (더 추워진다/덜 추워진다) ㄴ자전축이 기울어진 만큼 ()를 받는 면적이 달라지기 때문이다. ㄴ이는 북반구, 남반구 공통이다. 2. 세차 운동)를 중심으로 26000년을 주기로 회전하며 (-지구의 자전축이 ()이 변하는 운동을 한다. -지구 자전축이 기울어져 공전하는 것이 계절 변화가 나타나는 주된 원인으로, 계절 변화는 ()에 의해 일어난다. -북반구 기준으로, 현재는 궤도의 근일점에서 (여름/겨울)이고 원일점에서 (여름/겨울)인데 지구 자전축의 방향이 현재와 반대가 되면 궤도의 근일점에서 (여름/겨울)이고 원일점에서 (여름/겨울)이 된다. ㄴ현재로부터 13000년 후 북반구의 여름은 태양과 (가까워져/멀어져) 여름의 평균 기온이 (올라가고/내려가고) 같은 시기에 남반구의 겨울은 태양과 (가까워져/멀어져) 겨울의 평균

기온이 (올라간다/내려간다)

ㄴ즉 북반구의 연교차는 (증가/감소)하고, 남반구의 연교차는 (증가/감소)한다. ㄴ6500년 후 근일점에서 북반구의 계절은 ()이다.
3. 지구 공전 궤도의 이심률 변화 -지구는 ()를 따라 공전하고 있고, ()의 찌그러진 정도를 이심률이라고 하는데 0에 가까울수록 (), 1에 가까울수록 ()이다.
L공전 궤도의 이심률이 증가하면 원일점에서 지구와 태양 간의 거리가 (가까워져/멀어져) 북반구 (여름/겨울)의 평균 기온이 (상승/하강)하고 근일점에서 지구와 태양 간의 거리가 (가까워져/멀어져) 북반구 (여름/겨울)의 평균 기온이 (상승/하강)하기에 북반구 기온의 연교차가 (커진다/작아진다)
L이심률이 감소하면 북반구 기온의 연교차는 (커지고/작아지고) 남반구 기온의 연교차는 ()이기에
(커진다/작아진다)
그 외의 기후 변화의 요인은 (), (), (), () 등이 있다.
온실 효과: 지구의 ()에 의해 지구 표면의 평균 온도가 (높게/낮게) 유지되는 현상
L대기가 없을 때 낮에는 지표면의 온도가 (), 밤에는 지표면의 온도가 ().
니대기가 있는 경우, 파장이 (긴/짧은) ()은 지구 대기에 의해 흡수되었다가 지표면과 우주 공간으로 다시 방출되고, 다시 방출되는 () 과정에서 온실효과가 일어나 평균 온도가 (높게/낮게) 유지된다.
온실 기체: 지표면이 방출하는 ()을 흡수하여 ()를 유발하는 기체 나(), (), (), (), (), ()) ()
지표면의 ()를 줄여준다.
(): 지구의 에너지 출입이 열적 평형을 이룬다. ㄴ먹은 만큼 뱉어낸다!!


```
반사율
L구름 반사 ( )+지표 반사 ( )+대기 반사 ( )=( )

지표면
L태양 복사 에너지의 흡수 ( )+( )+( ) )
=잠열 ( )+대류 및 전도 ( )+지표 복사 ( )-대기 복사에 의한 재복사 ( )
=( ) )


대기
L태양 복사 에너지의 흡수 ( )+( ) )
=( )
```

*여기는 관련 숫자를 직접 집어넣는 방법으로 답을 작성하면 되고, 대기의 두 번째 칸에는 대기 복사의 흡수/방출에 관한 값과 요인들을 적으시면 됩니다.

)가 증가한다.

*각 계산의 맨 마지막 줄에는 그래서 얼마만큼 먹고 뱉는지 적어주시면 됩니다.

지구 온난화가 가속화될수록 (

이 자료를 통해 알 수 있는 사실을 모두 적어보자.

1	
1	

2.

3.

4.

5.

6.

지구 온난화에 의한 현상

- 1. 해수 온도 (상승/하강)-이산화탄소 용해도 (증가/감소) 및 해수면 (상승/하강)-이산화탄소 (증가/감소)-지구 온난화 심화
- 2. 빙하 면적 (증가/감소)-해수면 (상승/하강) 및 극지방의 반사율 (증가/감소)-지구 온난화심화
- 3. 증발량 (증가/감소)-수증기량 (증가/감소)-지구 온난화 심화

*해수면 상승의	원인은 (), () 등이 있다.
*(), (), () 등에 의해 지구 온난화기
심화되기도 한다	斗.		

네모 칸에는 식을 써 주세요!!

흑체: 입사하는 모든 파장의 (최대로 ()하는 가상의 물차 ㄴ별은 흑체에 가깝다.	, — ,)하고 해당 온도어]서 ()를	
플랑크 곡선에서 흑체가 방출하는	복사 에너지의 세기	기는 ()에 따라 달라진다.	
빈의 변위 법칙: 흑체의 표면 온도이는 (길어진다/짧아진다).	E가 (높을수록/낮을	수록) 최대 에너지를	· 방출하는 파장의 길	
즉 흑체의 온도와 파장의 길이는 ([정비례/반비례) 관ː	계이다.		
빈의 변위 법칙에 따라 표면 온도(길어서/짧아서)()색을 영역의 파장대가(길어서/짧아서) 나이에 따라 별의 분광형을 분류할 형으로, 파랑-청백-하양-황백-노란	띠고, 표면 온도기 ()색을 막 날 수 있는데 파란색 당-주황-빨강 순으로	나 낮은 별일수록 복 된다. 에서 ()형, 늘	자 에너지를 방출하는 붉은색에서 ()	
안시 등급 (m_V) : (사진 등급 (m_P) : ()	색지수:		
니표면 온도가 높을수록 파장이 (전 등급이 안시 등급보다 (커/작아) 설	,			
U, B, V등급은 특정 파장의 빛만 통과하는데 U 필터는 (), B 필터는 (), V 필터는 () 빛을 통과시킨다. 특히 색지수로 ()를 이용한다. 연속 스펙트럼: 흑체가 모든 파장에 걸쳐 복사 에너지를 방출해 모든 파장 영역에서 빛이 연속적인 띠 형태로 나타난다. 방출선 스펙트럼: (고온/저온)의 기체가 특정 파장 영역에서만 밝은 빛을 내는 것흡수선 스펙트럼: (고온/저온)의 기체가 특정 파장 영역에서 세기가 (강해져/약해져) 어두운 선 형태로 나타나는 것				
	과 ()이 겹친다.		
별의 광도: ()의 총	량			

포그슨 방정식(겉보기 등급에 대한 공	식과 절대 등급에 대한 공식 모두 써 보자)
슈테판 볼츠만 법칙: 흑체의 표면 온도 타낸 식이다.	E가 높아질 때 방출하는 에너지는 (증가/감소)하는 걸 나
아래 네모 칸에는 별의 광도(L)을 슈타하는 식을 유도해보자.	네판 볼츠만 공식을 이용해 정리해보고 별의 반지름을 구
H-R도의 가로축: (H-R도의 세로축: ()를 나타내고 왼쪽으로 갈수록 ())를 나타내고 위로 갈수록 ()
주계열성에 속하는 별은 H-R도의 (반지름과 질량이 크다.)에 위치할수록 표면 온도와 광도가 높고,
] (크고/작고), 반지름이 (크고/작고) 광도가 (크고/작고)
적색 거성은 H-R도의 () 나() 반응을 끝내면 져) 붉은색을 띠게 된다.	에 있다. 면서 반지름이 (증가/감소)하고, 표면온도가 (높아져/낮아
나광도가 매우 큰 이유는 ()

```
초거성은 H-R도의 ( )에 분포한다.
L광도와 반지름이 적색 거성보다 (크다/작다)
ㄴ표면 온도는 (적색/청색) 초거성이 더 크고, 반지름은 (적색/청색) 초거성이 더 크다.
L밀도가 (큰/작은) 편이다.
백색왜성은 H-R도의 (
                    )에 분포한다.
ㄴ온도가 (높은/낮은) 편이며 반지름이 (커/작아) 광도는 (크다/작다).
ㄴ밀도는 (크다/작다).
원시별의 탄생 조건: 온도가 (높으며/낮으며) (밝게/어둡게) 보이는 (저온/고온) (저밀도/고밀
도)의 성운이 ( )하여 탄생하게 된다.
ㄴ질량이 너무 작을 경우, 주계열성으로 진화하지 못하고 (
                                   )이 된다.
원시별에서 중력 수축이 진행되면서 크기가 (늘어나고/줄어들고) 온도가 (상승한다/하강한다)
느기체 압력에 의해 외부로 밀어내는 힘보다 ( )이 더 크기 때문
L원시별의 질량이 클수록 중력 수축이 (빠르게/느리게) 일어나 주계열에 도달하는 속도가 (빠
르다/느리다)
ㄴ중력 수축 에너지는 초기에 별의 중요한 에너지원으로 사용되다가 이후에 별의 중심부에서
  ) 반응이 일어날 수 있도록 한다.
주계열성은 질량에 따라 수명과 진화 과정이 결정된다.
주계열성의 중심부에서 ( ) 반응이 일어나며 ( )이 발생해 질량
이 (늘어난/줄어든) 만큼 에너지로 변한다.
ㄴ질량이 큰 주계열성일수록 중심부의 온도가 (높고/낮고) 생성되는 에너지량이 (많아/적어)
표면 온도가 (높고/낮고) 광도가 (크다/작다)
질량이 태양의 2배보다 작은 별은 양성자-양성자 반응이 일어나 양성자끼리 직접 충돌해 (
     )을 만들어낸다.
ㄴ( )가 차례로 반응해 ( )을 만들어낸다.
또한 이 질량대의 별의 내부 구조는 큰 ( )과 상대적으로 얇은 (
존재하는데, 중심부에서는 ( )에 의한 열전달이, ( )에서는 별의 표면
에 가까워질수록 온도가 (높아지며/낮아지며) ( )에 의한 열전달이 우세하다.
이 별은 주계열 과정을 끝내고 ( )으로 진화하는데 중심부에서 (
                                           )0]
수축해 온도가 높아지며 ( ) 반응을 시작해 (
 )을 거쳐 ( )가 되면서 최종적으로 (
                            )이 생성되거나, 질량이 태양
정도이거나 태양보다 작은 경우는 (
                            ) 반응까지만 일어난다.
```

이후 바깥층을 이루는 물질을 방출해 (속 수축하여 ()이 형성된다.)을 형성하고, 이후에 중심핵이 계
() 원자핵이 촉매로 작용한다.	.자핵을 만드는 과정에서 (), (),)이 일어나는 작은 ()과
주계열성에서는 정역학 평형 상태가 나타나는 의한 중력과 (력이 평형을 이루는 상태이다. ㄴ안쪽으로 갈수록 온도가 (증가/감소)해 안쪽 ㄴ()이 우세하면 수 면 팽창한다.)에 의한 바깥 방향의 기체 압 ·에서 바깥쪽으로 압력 차에 의한 힘이 발생한다.
일어나면서 수소 연소층에서 () 연소)으로 진화해 () 반응이 계속해 .층, () 연소층, (으로 구성된 핵이 나타나고, ()보다 무거운
이후 중심부가 급격히 수축해 폭발하면서 (에너지가 방출된다.) 현상이 일어나고, 엄청난 양의
간으로 흩어지고 중심부는 질량에 따라 수축한)보다 () 원소들은 우주 공 해 ()로 이루어졌으며 매우 빠르게 빛도 빠져나가기 어려운 ()로 진화하 형성해 원시별을 만들어낸다.

외계	행성은	직접적인	관측이	어려워	간접적인	방법으로	관측한다.

시선 속도 이용 -행성이 중심별 주위를 공전할 때, 별과 행성이 ()을 기준으로 공전하기에 ()에 의해 스펙트럼 (방출선/흡수선)의 파장 변화가 생긴다. 나행성의 질량이 (클수록/작을수록), 공전 궤도 장반경이 (클수록/작을수록), 행성과 중심별 사이의 거리가 (가까울수록/멀수록) 중심별의 운동 속도가 (커져/작아져) 파장 변화가 (커지므로/작아지므로) 행성을 확인하기 (쉽다/어렵다) 나중심별이 관측자로부터 멀어질수록, 행성이 관측자로부터 (멀어질수록/가까워질수록) (적색편이/청색 편이)가 나타난다.
식 현상 이용 -행성의 공전 궤도면이 관측자의 시선 방향과 (나란할 때/수직일 때) 행성이 중심별의 앞면을 지날 때 마다 별의 일부가 가려져 어두워진다. ㄴ행성의 반지름과 별의 밝기가 감소하는 비율은 (비례/반비례)한다. ㄴ공전 궤도 반지름이 (길수록/짧을수록), 행성이 (클수록/작을수록) 행성을 발견하기 쉽다. ㄴ가려진 시간이 길수록 공전 주기는 (길다/짧다)
미세 중력 렌즈 이용 -천체의 ()이 렌즈 역할을 해 빛이 휘어지게 해서 행성을 발견한다. 나외계 행성이 존재할 경우, 행성에 의한 밝기 변화가 추가로 나타난다.
외계 생명체가 존재할 조건: () 생명 가능 지대: 행성에 ()의 물이 존재할 수 있는 구역
중심별의 질량이 클 경우, 생명 가능 지대는 (가까워지며/멀어지며) 구역이 (넓어진다/좁아진다). 다만 진화 속도가 너무 빨라 생명체의 진화가 이루어질 시간이 부족하다.
중심별의 질량이 작을 경우, 생명 가능 지대는 (가까워지며/멀어지며) 구역이 (넓어진다/좁아진다). 다만 중력의 영향으로 ()을 하기에 생명체가 존재하기 어렵다.
생명체가 존재할 행성의 조건: (), (), (), (), (), (
나선 은하: ()을 가지고 있다. -구조: 중앙 팽대부에는 나이가 (많은/어린) (푸른색/붉은색) 별과 () 성단이 분포하고, 원반 부분에는 나이가 (많은/어린) (푸른색/붉은색) 별과 () 성단이 분포하며 (

)이 많이 분포한다. -막대 나선 은하: 나선 은하가 (안정/불안정)한 경우에 중심부에 막대 구조가 생성되며 상대적으로 나이가 (많은/적은) 경우가 많다.
타원 은하: () 형태의 은하이며 나이가 (많은/적은) 별들로 구성되어 있으며, ()에 따라 세분화하기도 한다.
불규칙 은하: () L젊은 별과 늙은 별을 모두 포함하고 있고, 성간 물질이 풍부하다.
우리 은하는 ()이다.
전파 은하: 전파 영역에서 ()를 방출하며 가시광선 영역보다는 ()영역에서 관측이 용이하다. 나구조: 중심에 핵이 있고, 거대한 돌출부인 ()가 존재하며 ()와 핵이 ()로 연결되어 있다.
케이사: 우주 초기에 만들어진 천체로 거리가 매우 멀어 (적색 편이/청색 편이)가 나타나며. 중심부에 ()이 있을 것으로 추정된다.
세이퍼트 은하: ()이 매우 밝고 스펙트럼 방출선 폭이 (넓게/좁게) 관측된다. ㄴ주로 ()의 모습으로 관측되며 중심부의 광도가 (). ㄴ중심부에 ()이 있어 은하에 존재하는 성간 물질이 움직이는 속도가 (빠르다/느리다)
충돌 은하: 은하와 은하가 충돌해서 형성된 은하 -충돌 부분에서 ()가 생기고, 경우에 따라 ()가 형성되기도 한다.
외부 은하의 스펙트럼 (흡수선/방출선)의 파장이 (붉은색/푸른색) 쪽으로 치우치는 현상인 ()가 일어나며 멀리 있는 은하의 ()가 더 (크다/작다).
후퇴 속도: () 방향으로 멀어지는 속도로, 거리가 멀어질수록 ()에 의해 ()가 나타난다.
적색 편이량과 후퇴 속도에 대한 공식을 아래에 적어 보자.

허블 법칙: 후퇴 속도는 ()와 ()의 곱과 같다.
우주의 크기와 나이는 아래와 같이 구할 수 있다.
허블 법칙을 통해 우주는 (팽창/수축)하고 있음을 알 수 있다.
빅뱅 우주론: 온도가 매우 (높고/낮고) 밀도가 매우 (높은/낮은) 한 점에서 폭발을 일으켜 평창하면서 우주를 구성하는 물질이 만들어지면서 우주가 진화했다고 설명하는 이론
빅뱅 직후: ()과 온도가 ()하며 기본 입자가 생성되었다. 1초 후: 기본 입자의 결합으로 ()와 ()가 만들어졌다. 3분 후: ()으로 ()원자핵, ()원자핵 등이 만들어졌다. 38만년 후: ()가 만들어졌으며 빛이 퍼져나가면서 ()를 확인할 길 있다. 이 이후는 암흑의 시대라고 부른다. 나우주가 팽창하면서 우주의 밀도는 (증가/감소)했다.
박행 우주론의 증거 -(): 초기 우주의 매우 뜨거운 온도에 의한 복사가 차차 온도가 낮아지던 서 매우 낮은 온도의 복사 형태로 남은 것
박뱅 우주론의 한계 -박뱅 우주론에 따르면 우주는 물질의 양에 따라 곡률을 가지지만 우주의 곡률은 0이다. 나이를 ()라고 한다우주 배경 복사가 일정하고 균일한 이유를 밝히지 못한 () -자기 단극 문제 등
이를 해결하기 위해 등장한 것이 ()이다.

ㄴ빅뱅 직후 급격한 팽창을 일으켰으며 위의 문제를 해결했다.

은하의 회전 속도가 (하다는 것과 은하의 질량 측정을	· 통해 암흑 물질의 존재를 예
측했다.		
L암흑 물질은 ()	로 감지할 수 없으며, 질량은 우	주의 ()를 차지하
고 있어, ()에 따른 전	학용으로 존재를 파악할 수 있다	
우주 가속 팽창: (바탕으로 우주의 팽창 속도는
()하고 있음을 알이		
L빅뱅 이후 ()하다		
암흑 에너지: 중력 반대 방향으로	모 작용해 우주의 팽창을 () 시키는 에너지
ㄴ우주 가속 팽창의 이유는 ()의 세기보다 ()의 세기가 크기 때문
이라고 예측된다.		
우주의 구성 성분 중 69%는 ()가 차지하고 있으
며 극소수만 천체 및 원자핵, 입	자 등으로 구성되어 있다.	
비베 이즈르에 뛰기 이즈이 미드	로 /	비사에 빠리 O포 코카이 취
빅뱅 우주론에 따라 우주의 밀도		. 면수에 따라 우수 공간이 위
어진 정도가 결정되며 우주의 미		wul 그 - 미 - 리 구 1 / wul 그 - 미 - 샤 주 \ 그 1
-열린 우주: 우주의 밀도가 ()모나 (크고/삭고) (빠르게 팽상/빠르게 수숙/하는
형태이다.		가의 제원의 기원이다
-평탄 우주: 우주의 밀도가 (
-닫힌 우주: 우주의 밀도가 ()보나 (크고/삭고) (빠르게 팽창/빠르게 수축)하는
형태이다.		
ㄴ다만 여기서는 ()의 영앙을 무시했다.	

그간 지구과학1 개념 확인 테스트를 공부하시느라 정말 수고하셨습니다. 지구과학1 1등급을 간절히 바랍니다.