기출의 재구성 <어려운> 기출문제

2019년 수능

1. 다음은 A(g)와 C(g)가 각각 분해되는 반응 (가)와 (나)의 화학 반응 식이다.

$$(7)$$
 $A(g) \rightarrow 2B(g)$

(나)
$$C(g) \rightarrow 2D(g)$$

표는 온도 T에서 부피가 동일한 두 개의 강철 용기에 A(g) x몰과 C(g)y몰을 각각 넣어 반응시킬 때, 반응 시간에 따른 반응물의 몰분율에 대한 자효이다. 2t초와 3t초에서 각각 [A] = [C]이다.

반응 시간(초)		t	2t	3t
반응물의	(フト)		$\frac{1}{7}$	$\frac{1}{15}$
몰분율	(나)	a	$\frac{1}{3}$	

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 일정하다.) [3점]

- ㄱ. (가)는 1차 반응이다.
- L. 2x = y이다.
- \Box . $a = \frac{3}{5}$ 이다.

① ∟ ② ⊏

③ ¬, ∟ ④ ¬, ⊏ ⑤ ¬, ∟, ⊏

2019년 수능

2. 다음은 A(g)로부터 B(g)와 C(g)가 생성되는 반응의 화학 반응식 이다.

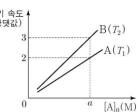
$$A(g) \rightarrow 2B(g) + C(g)$$

표는 온도 T에서 강철 용기에 $\mathrm{A}(g)$ 1몰을 넣어 반응시킬 때, 반응 시간 에 따른 $\mathrm{A}(g)$ 의 부분 압력 (P_{A}) 에 대한 $\mathrm{B}(g)$ 의 부분 압력 (P_{B}) 의 비 $(\frac{F_{\mathrm{B}}}{P})$ 를 나타낸 자료이다. 반응 시간이 5분이 되기 전 특정 시점에 소량의 고체 촉 매(X)를 넣었다.

반응 시간(분)	1	2	3	4	5
$rac{P_{ m B}}{P_{ m A}}$	6	30	62	126	254

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 일정하다.)

- \neg . A(g)의 양이 0.5몰이 되는 데 걸린 시간은 1분이다.
- ㄴ. 반응 시간이 1.5분일 때 $\frac{P_{\mathrm{B}}}{P_{\mathrm{A}}} = 14$ 이다.
- c. X는 반응 속도를 감소시킨다.


① □ ② ∟ ③ □ ④ □, □ ⑤ ∟, □

2019년 수능

3. 다음은 A(g)로부터 B(g)와 C(g)가 생성되는 반응의 화학 반응식이 다. 이 반응의 활성화 에너지는 E_a 이고, 온도 T_1 과 T_2 에서의 반응 속도 상 수는 각각 k_1 과 k_2 이다.

$$2A(g) \rightarrow 2B(g) + C(g)$$

그림은 강철 용기에 A(g)를 넣은 후 초기속도 T_1 과 T_2 에서 각각 반응이 진행될 때 $(^{\rm OFJ}_{\rm GL})$ [A]의 초기 감소 속도와 [B]의 초기 생성 속도를 A(g)의 초기 농도($[A]_0$) 에 따라 나타낸 것이다. T_1 에서 A(g)의 반감기는 t초이다.

 $[A]_0 = aM$ 일 때, 이에 대한 설명으로 옳은 것만을 $\langle \pm 1 \rangle$ 에서 있는 대로 고른 것은? (단, 반응이 진행되는 동안 온도는 일정하다.)

- ㄱ. 반응 초기에 E_a 보다 큰 에너지를 가지는 $\mathrm{A}(g)$ 분자는 T_2 에서 가 T_1 에서보다 많다.
- $\frac{k_2}{k_1} = \frac{2}{3} \text{ OIC}.$
- ㄷ. T_1 에서 반응 시간이 2t초일 때, $[C] = \frac{3}{4}a$ M이다.

- (1) (2) (3) (3) (4) (4) (5) (5) (7) (7)

2019년 모의평가

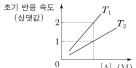
4. 다음은 A로부터 B가 생성되는 반응의 화학 반응식이다.

$$A(g) \rightarrow 2B(g)$$

표는 Ne(g)이 들어있는 강철 용기에 A(g)를 넣어 반응시킬 때, 반응 시 간(t)에 따른 Ne(g)의 몰분율이다.

실험		초기 양(몰)		Ne(g)의 몰분율		
	28	A(g)	$\operatorname{Ne}(g)$	t = 1 분	t = 2 분	t = 4 분
	Ι	x	2	$\frac{1}{7}$	$\frac{1}{8}$	$\frac{4}{35}$
	П	3x	2		y	

y는? (단, 온도는 T로 일정하다)


- ① $\frac{1}{9}$ ② $\frac{1}{10}$ ③ $\frac{1}{19}$ ④ $\frac{1}{21}$ ⑤ $\frac{1}{22}$

2018년 수능

5. 다음은 기체 A로부터 기체 B가 생성되는 반응의 화학 반응식이다.

$$A(g) \rightarrow 2B(g)$$

그림은 온도 T_1 과 T_2 에서 $\mathsf{A}(g)$ 의 초기 농도([A])에 다른 초기 반응 속도 를, 표는 T_1 에서 강철 용기에 $\mathsf{A}(g)$ 를 넣고 반응시킬 때 반응 시간에 따른 B(q)의 농도([B])를 나타낸 것이다.

반응 시간(분)	0	t	2t	3t
[B](M)	0	x	3	$\frac{7}{2}$

 T_2 에서 부피가 1L인 강철 용기에 $\mathbf{A}(g)$ 2x몰을 넣고 반응시켜 반응 시간 이 2t분일 때, $\mathsf{A}(q)$ 의 농도는? (단, 반응이 진행되는 동안 온도는 일정하 다.) [3점]

- ① 2M

2018년 수능

6. 다음은 기체 A로부터 기체 B와 C가 생성되는 반응의 화학 반응식이

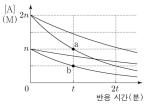
$$aA(g) \rightarrow bB(g) + C(g)$$
 $(a, b : 반응 계수)$

부피가 1L인 강철 용기에 x몰의 A(q)를 넣어 반응시킬 때, 그림은 반응 시간에 따른 A(q)의 농도([A])를, 표는 반응 시간에 따른 A(q)의 몰분율을 나타낸 것이다.

반응 시간(분)	0	t	2t
$\mathrm{A}\left(g ight)$ 의 몰분율	1	$\frac{9}{13}$	$\frac{7}{15}$

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 일정하다.) [3점]

- --- < 보기 > --
- ㄱ. b = 2a 1이다.
- L. 3t분에서 $[A] = \frac{5x}{11}M$ 이다.
- \sqsubset . 부피가 2L인 강철 용기에 x몰의 $\mathsf{A}(g)$ 를 넣어 반응시킬 때, $[A] = \frac{x}{4} M$ 가 될 대까지 걸리는 시간은 y분이다.


2018년 수능

7. 다음은 기체 A로부터 기체 B가 생성되는 반응의 화학 반응식과 반응 속도식이다. 반응 차수(m)는 0과 1 중 하나이다.

$$\mathsf{A}(g) \to \mathsf{B}(g)$$
 $v = k[A]^m \ (k : 반응 속도 상수)$

표는 4개의 강철 용기에 $\mathsf{A}(g)$ 를 각각 넣은 후 반응시킨 실험 $\mathsf{I} \sim \mathsf{IV}$ 의 반 응 조건을, 그림은 $I \sim IV$ 에서 반응 시간에 따른 A(q)의 농도([A])를 나타낸 것이다.

실험	온도	A(g)의 초기 농도(M)	촉매
I	T_1	n	없음
П	T_1	n	X(s)
Ш	T_1	2n	없음
IV	T_2	2n	없음

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- ㄱ. $T_1 > T_2$ 이다.
- L. X(s)는 부촉매이다.
- C. 순간 반응 속도는 a에서가 b에서의 2배이다.

- ① 7 ② □ ③ 7, □ ④ □, □ ⑤ 7, □, □

2018년 모의평가

8. 다음은 A(q)가 B(q)를 생성하는 반응의 화학 반응식과 반응 속도식 이다.

 $A(g) \rightarrow 2B(g)$ v = k[A] (k : 반응 속도 상수)표는 부피가 같은 두 강철 용기에 $\mathsf{A}(g)$ 를 각각 넣어 온도 $T_1,\,T_2$ 에서 반 응시킬 때, 반응 시간(t)에 따른 $\dfrac{P_B}{P_A}$ 를 나타낸 것이다. P_A 와 P_B 는 각각 A(g)와 B(g)의 부분 압력이다.

실험	온도	반응 전 A의 질량(g)	$\frac{P_B}{P_A}$			
		/ = E O (g)	t = 0	t = 10분	t = 20분	t = 30분
I	T_1	1	0	2	6	14
П	T_2	4	0	x	30	y

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

- ㄱ. $T_1 > T_2$ 이다.
- \bot . y = 126이다.
- ${\sf C.}\ t=20$ 분일 때 용기 내 A의 질량은 I에서와 II에서가 같다.

- ① 7 ② L ③ 7, □ ④ L, □ ⑤ 7, L, □

2017년 수능

9. 다음은 어떤 화학 반응의 자료와 반응 속도에 대한 실험이다.

○ 화학 반응식과 반응 속도식

 $\mathrm{2A}(g) \,\to\, \mathrm{B}(g) \,+\, \mathrm{3C}(g) \qquad v = k[A]^m$

(k : 반응 속도 상수, m : 반응 차수)

[실험 과정]

- (가) 부피가 같고 온도가 각각 T_1 K, T_2 K인 두 강철 용기 I, Π 에 A
- (g) 2.4몰을 각각 넣어 반응시킨다.
- (나) 반응 시작 후 t_1 초일 때 I, Π 속 $\mathsf{B}(g)$ 의 몰수를 구한다.
- (다) A(q)의 초기 몰수를 달리하여 (가)와 (나)를 반복한다.

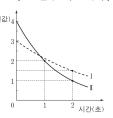
[실험 결과]

- \bigcirc 반응 시작 후 t_1 초일 때 $\mathsf{A}(g)$ 의 초기 몰수에 따른 두 용기 속 B
- (g)의 몰수

A(g)의 초기 등	2.4	3.2	4.0	4.8	
t_1 초일 때	$\mathrm{I}\left(T_{1}K\right)$	0.9	0.9	0.9	0.9
B(g)의 몰수(몰)	$\mathrm{II}(T_2K)$	0.6	0.6	0.6	0.6

 T_1 K의 용기 I에 A(g) 4.6몰을 넣고 T_2 K의 용기 I에 A(g) 4.2몰을 넣 어 동시에 반응시켰을 때, 반응 시작 후 두 용기 속 A(q)의 몰수가 처음으 로 같아지는 시간(초)은? (단, 강철 용기의 온도는 일정하게 유지된다.) [3

- ① $\frac{5}{3}t_1$ ② $\frac{4}{3}t_1$ ③ t_1 ④ $\frac{2}{3}t_1$ ⑤ $\frac{1}{3}t_1$


2017년 수능

10. 다음은 기체 A가 반응하여 기체 B와 C를 생성하는 반응의 화학 반응식과 반응 속도식이다. 반응 차수(m)는 0과 1 중 하나이다.

 $\mathrm{2A}(g) \,\to\, \mathrm{2B}(g) \,+\, \mathrm{C}(g) \qquad v = k[A]^m$

(k : 반응 속도 상수)

그림은 T_1 K인 강철 용기 I과 T_2 K인 강 $rac{v}{ ^{(egin{array}{c} egin{array}{c} v \ \end{array})}}$ 철 용기 Π 에서 각각 $\mathbf{A}(g)$ 가 반응할 때 시 간에 따른 순간 반응 속도(v)를 나타낸 것 이다. k는 T_2 K에서가 T_1 K에서의 2배이다.

2초일 때 $\dfrac{ \mathbb{II} \, \text{에서의} \, [A]}{ \mathbb{I} \, \text{에서의} \, [A]}$ 는? (단, 강철 용

기의 온도는 일정하게 유지된다.)

① $\frac{1}{3}$ ② $\frac{1}{2}$ ③ $\frac{3}{2}$ ④ 2 ⑤ 3

2017년 모의평가

11. 다음은 기체 A가 기체 B와 C를 생성하는 반응의 화학 반응식과 반응 속도식이다.

 $2A(g) \rightarrow 2B(g) + C(g)$

 $v=k[A]^m$ (k는 반응 속도 상수, m은 반응 차수)

표는 부피가 같은 두 강철 용기에 A(q)를 넣어 서로 다른 온도 T_1, T_2 에서 반응시킬 대, 반응 시간(t)에 따른 생성물 중 하나의 밀도를 나타낸 것이다. k는 T_2 에서가 T_1 에서의 2배이고, B의 분자량은 C의 $\frac{5}{9}$ 배이다.

,,H)	생성물의 밀도(g/L)				
<i>t</i> (분)	T_1 에서 B	T_2 에서 C			
0	0	0			
10	9.6	4.8			
20	14.4	6.0			
30	16.8	6.3			

t=0일 때, $\dfrac{T_1$ 에서 초기 반응속도}{T_2에서 초기 반응속도 는?

① $\frac{12}{5}$ ② 2 ③ $\frac{8}{5}$ ④ $\frac{6}{5}$ ⑤ $\frac{4}{5}$

2017년 모의평가

12. 다음은 기체 A가 기체 B와 C를 생성하는 반응의 화학 반응식이다.

$$4A(g) \rightarrow bB(g) + C(g)$$
 (b는 반응 계수)

표는 강철 용기에 $\mathbf{A}(g)$ 를 넣어 반응시킬 때, 시간에 다른 용기 속 전체 압 력(P)을 나타낸 것이다. B와 C의 초기 농도는 0이다.

I	시간(초)	0	t	2t	3t
	<i>P</i> (기압)	3.2	4.4	5.0	5.3

 $\frac{2t$ 초일 때 $[C]}{t$ 초일 때 $[B]}$ 는? (단, 온도는 일정하다.)

- ① $\frac{1}{2}$ ② $\frac{1}{3}$ ③ $\frac{1}{4}$ ④ $\frac{1}{6}$ ⑤ $\frac{1}{12}$

2016년 수능

13. 다음은 A와 B가 반응하여 C를 생성하는 화학 반응식이다.

 $aA(g) + B(g) \rightarrow 2C(g)$ (a는 반응 계수)

표는 부피가 같은 3개의 강철 용기에 A(g)와 B(g)를 넣어 반응시킬 때, 반 응 초기 몰수와 시간에 따른 용기 속 전체 기체 몰수이다.

실험	반응 초기 몰수		전체 기체 몰수	
28	А	В	t = 10분	t = 20 분
I	16	16	24	24
П	24	8	28	26
Ш	16	8	20	x

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 일정하다.) [3점]

- ----- < 보 기 > -
- ㄱ. 초기 반응 속도는 Ⅰ이 Ⅱ의 2배이다.
- ∟. *a*+*x*=21이다.
- C . t=20분일 때, $\dfrac{\mathsf{I}$ 에서 $\mathsf{C}(g)$ 의 몰분율 E =1이다.

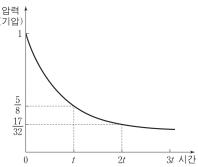
- ① 7 ② □ ③ 7, □ ④ 7, □ ⑤ □, □

2016년 수능

14. 표는 서로 다른 온도의 두 강철 용기에서 반응 $A(g) \rightarrow 2B(g)$ 이 일어날 때 시간에 따른 [B]이다.

실험	온도	[B](M)				
28		t = 0	t = 20분	t = 40분	t=60분	
I	T_1	0	6.4	9.6	11.2	
П	T_2	0	4.8	6.0	6.3	

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?


- $\neg . T_1 < T_2$ 이다.
- L. I에서 순간 반응 속도는 20분일 때가 60분일 때의 4배이다.
- с. 피에서 A의 초기 농도는 4.8 M이다.

2016년 모의평가

15. 다음은 A로부터 B가 생성되는 화학 반응식이다.

$$2A(g) \rightarrow B(g)$$

그림은 1몰의 A(g)를 강철 용기에 넣고 반응시켰을 때 시간에 따른 용기 내 전체 기체의 압력을 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 일정하다.) [3점]

- ㄱ. t일 때 B의 부분 압력은 $\frac{3}{8}$ 기압이다.
- L. 3t일 때 용기 내 전체 기체의 양은 $\frac{31}{64}$ 몰이다.
- ㄷ. $\frac{t일 \ \mbox{때의 반응 속도}}{2t \mbox{일 때의 반응 속도}} = \frac{20}{17} \mbox{이다.}$
- ① 7 2 5 7, 6

2015년 수능

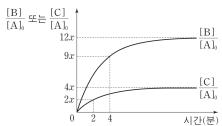
다음은 A와 B가 반응하여 C를 생성하는 화학 반응식과 반응 속도 식이다.

$$A(g) + bB(g) \rightarrow C(g) (b : 반응 계수)$$

표는 강철 용기에 A(g)와 B(g)를 넣어 반응시킬 때, 시간에 따른 용기 속 전체 압력(P)을 나타낸 것이다. 실험 I에서 반응이 완결되었을 때 용기에 는 C(g)만 존재한다.

시신	초기 A와 B의	P		기압)	
실험	질량의 합(g)	0	t초		∞
I	10	12	8		4
П	13	18	14		10
Ш	x	16	10		y

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?(단, 온도는 일정하고 역반응은 일어나지 않는다.) [3점]


- □. I에서 초기 A의 부분 압력은 6기압이다.
- L. 초기 B의 질량은 Ⅲ에서가 I에서보다 크다.
- □. x=140|□.

- 1 7 2 4 7, 5 5 4, 5

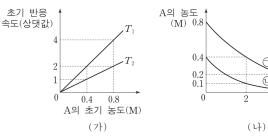
2015년 모의평가

17. 다음은 A에서 B와 C가 생성되는 화학 반응식이다.

그림은 1기압의 A가 들어 있는 강철 용기에서 반응이 일어날 때, 반응 시 간에 따른 $\frac{[B]}{[A]_0}$ 와 $\frac{[C]}{[A]_0}$ 를 나타낸 것이다. $[A]_0$ 는 A의 초기 농도이며, 역반응은 일어나지 않는다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 일정하다.) [3점]

- < 보 기 > -


- ㄱ. $x 는 \frac{1}{4}$ 이다.
- ㄴ. 평균 반응 속도는 0~2분에서가 2~4분에서의 2배이다.
- \Box . 8분일 때, 혼합 기체의 압력은 $\frac{15}{8}$ 기압이다.
- ① ¬ ② L
- ③ □
- ④ ¬, ∟
- ⑤ ∟, ⊏

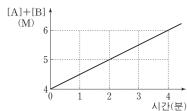
2015년 모의평가

18. 다음은 A가 반응하여 B를 생성하는 화학 반응식이다.

$$2A(g) \rightarrow B(g)$$

강철 용기에서 이 반응이 일어날 때, 그림 (7)는 온도 T_1 과 T_2 에서 A의 초기 농도에 따른 초기 반응 속도를, (나)는 온도가 각각 T_1 과 T_2 에서 일 어나는 반응의 시간에 따른 A의 농도를 나타낸 것이다.

(나)에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?


- \neg . \neg 은 T_2 에서의 반응이다.
- L. 1분일 때, ⓒ에서 생성된 B의 농도는 0.1 M이다.
- □. 4분일 때, B의 생성 속도는 ③에서가 ⓒ에서의 2배이다.

- 1 7 2 5 7, 4 4 4 5 7, 4

시간(분)

2014년 수능

19. 그림은 강철 용기에서 반응 $A \rightarrow 2B$ 가 일어날 때 시간에 따른 반 응물과 생성물의 몰 농도의 함([A]+[B])을 나타낸 것이다. B의 초기 농도는 0이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 일정하다.) [3점]

- ㄱ. 반응 속도 상수는 0.5M/분 이다.
- L. 2분일 때 [A]는 3M이다.
- □. A의 초기 농도가 8M이면, 4분일 때 [A]는 4M이다.

- 1 7 2 5 7, 4 4 4 5 7, 4

2014년 모의평가

20. 강철 용기에 1.6 M의 A를 넣고 다음과 같은 반응을 진행시켰다.

$$2A(g) \rightarrow B(g) + 2C(g)$$

표는 온도 T_1 과 T_2 에서 시간에 따른 B의 몰 농도이다.

시간(분)		0	2	4	6	8
	T_1	0	0.23	0.40	0.52	0.60
B의 몰 농도(M)	T_2	0	0.40	0.60	a	0.75

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, k는 T_1 에서의 반응 속도 상수이다.) [3점]

- < 보기 > -

- ㄱ. a=0.70이다.
- L. T_1 에서 반응 속도식은 v=k[A]이다.
- Γ . T_1 에서 초기 4분 동안 B(g)의 평균 생성 속도는 $0.2M \cdot 분^{-1}$ 이다.

① 7 ② L ③ 7, □ ④ 7, □ ⑤ L, □

2013년 수능

21. 다음은 기체 X와 Y의 화학 반응식이다.

 $aX(g) \longrightarrow bY(g)$ a, b: 반응 계수

표는 온도 T_1 에서 강철 용기에 X(g)를 넣고 반응시킬 때, 반응 시간과 온 도에 따른 X와 Y의 압력을 나타낸 것이다. 반응 시간 2분이 경과한 직후, 소량의 고체 촉매를 넣고 가열하여 온도를 T_2 로 높였다. T_2 <2 T_1 이다.

반응 시간(분)	온도(K)	X의 압력(기압)	Y의 압력(기압)
0	T_1	3.2	0
1	T_1	1.6	0.8
2	T_1	0.8	1.2
3	T_2	0.8	x

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

[3점]

— < 보기 > —

- \neg . 표에서 x는 1.2보다 크다.
- ㄴ. 넣어 준 촉매는 부촉매이다.
- □. 평균 반응 속도는 0~1분에서가 2~3분에서의 4배보다 크다.

2013년 수능

22. 다음은 일정한 온도에서 강철 용기에 들어 있는 X, Y로부터 Z가 생성되는 두 반응의 화학 반응식과 반응 속도식이다. Z의 생성 속도(v)는 v_1+v_2 , m과 n은 반응 차수, k는 상수이다.

 $X(g) \longrightarrow Z(g)$ 반응 속도 $(v_1) = k[X]^m$

 $Y(g) \longrightarrow Z(g)$ 반응 속도 $(v_2) = 2k[Y]^n$

Z의 생성 속도 $(v) = v_1 + v_2$

그림 (가)와 (나)는 X와 Y의 초기 농도를 각각 2 M로 하여 반응을 진행시 킬 때, [X]에 따라 Z가 생성되는 반응 속도 (v_1) 와 반응 시간에 따른 [Y]를 각각 나타낸 것이다.

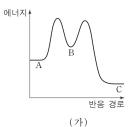
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?(단, X 와 Y 는 서로 반응하지 않고, [X]=1.2 M 일 때 [Y]>0이다.)

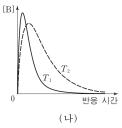
----- < 보 기 > ---

ㄱ. n은 m보다 크다.

 L . 반응 시간이 t분일 때, $[\mathsf{X}]$ 는 a M보다 크다.

C. v는 [X]가 1.8 M일 때가 1.2 M일 때의 1.5배이다.


2013년 수능


23. 다음은 3원자 분자 A가 B를 거쳐 C가 생성되는 반응의 화학 반응 식이다.

$$A(g) \xrightarrow{k_1} B(g) \xrightarrow{k_2} C(g)$$

k1, k2: 반응 속도 상수

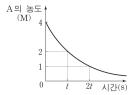
그림 (가)는 이 반응의 반응 경로에 따른 에너지를, (나)는 A의 초기 농도 를 같게 하여 온도 T_1 , T_2 에서 각각 반응시켰을 때 반응 시간에 따른 [B] 를 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

[3점]

---- < 보 기 > -

- ㄱ. 결합 에너지의 합은 C가 A보다 크다.
- $\mathsf{L}.\ k_2$ 는 k_1 보다 크다.
- Γ . T_2 는 T_1 보다 높다.


1 7 2 5 7, 6

2013년 모의평가

24. 다음은 기체 A와 B를 반응시켜 기체 C가 생성되는 반응의 화학 반응식이다.

$$A(g) + B(g) \rightarrow 2C(g)$$

그림은 B가 충분할 때 반응 시간에 따른 A의 농도를, 표는 반응물의 초기 농도에 따른 초기 반응 속도를 나타낸 것이다.

실험	초기 농	ラ도(M)	초기 반응 속도
2 11	A	В	(M/s)
I	1.0	2.0	0.1
I	2.0	1.0	0.1
II	3.0	2.0	a

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 일정하다.)

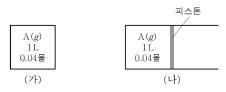
----- < 보기 > --

- ㄱ. 반응 속도식은 v=k[A][B]이다.
- L . 그림에서 반응 시간이 4t초이면 A의 농도는 0.25M가 된다.
- 표에서 a는 0.3이다.

기출의 재구성 <어려운> 연습문제

25. 다음은 A(g)가 반응하여 B(g)와 C(g)를 생성하는 반응의 화학 반응 식과 반응 속도식이다. k는 반응 속도 상수이고, m은 반응 차수이다.

$$2A(g) \rightarrow 2B(g) + C(g) \quad v = k[A]^m$$


표는 온도 에서 강철 용기에 A(g)를 서로 다른 농도로 넣고 반응시킨 실험 I과 Π 에서 초기 반응 속도와 반응 시간(t)이 10초일 때 기체에 대한 자료이다.

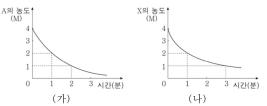
실헊	초기	t =	10 초
걸띰	반응 속도	A의 몰분율	[B](M)
I	2a	0.4	0.4
П	3a	0.4	0.6

 $t\!=\!20$ 초일 때 $\frac{\text{I 에서 [C]}}{\text{II 에서 [A]}}$ 는? (단, 온도는 일정하다.) [3점]

26. 다음은 A(g)의 분해 반응식과 반응 속도식이다.

 $A(g) \to \mathsf{B}(g) + \mathsf{C}(g) \quad v = k[A]^n \; (k : 반응 속도 상수)$ 표는 TK에서 그림과 같이 강철 용기 (T)와 실린더 (L)에 $\mathsf{A}(g)$ 를 0.04몰 씩 각각 넣고 반응시켰을 때, 반응 시간에 따른 $\mathsf{B}(g)$ 의 몰분율을 나타낸 것이다.

반응 시간(초)		0	t	2t	3t
n/ \01 PH0	(가)	0	$\frac{1}{3}$	$\frac{3}{7}$	x
B(g)의 몰분율	(나)	0	y		


이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 대기압은 1기압이고, 피스톤의 마찰은 무시한다.) [3점]

 \Box . $y = \frac{1}{4}$ or \Box .

27. 다음은 2가지 반응의 화학 반응식과 반응 속도식이다. k_1 , k_2 는 반응 속도 상수이고, m, n은 반응 차수이다.

$$\begin{split} \mathbf{A}(g) &\to \mathbf{B}(g) \qquad v_1 = k_1 [\mathbf{A}]^m \\ 2\mathbf{X}(g) &\to \mathbf{Y}(g) \qquad v_2 = k_2 [\mathbf{X}]^n \end{split}$$

그림 (가)와 (나)는 2개의 강철 용기에 A와 X를 각각 넣고 반응시켰을 때, 시간에 따른 반응물의 농도를 나타낸 것이다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 온도는 일정하고 역반응은 일어나지 않는다.) [3점]

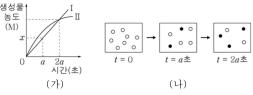
- ㄱ. m은 1이다.
- L. (나)에서 평균 반응 속도는 0 ~ 1분에서가 1 ~ 3분에서의 4배 이다.
- C. A와 X의 초기 농도를 2 M로 하여 반응시켰을 때, 2분 후 생성물의 농도 비는 [B]: [Y] = 3:1 이다.

28. 다음은 기체 A가 분해되는 화학 반응식이다.

$$2A(g) \rightarrow 3B(g) + C(g)$$

표는 t° C에서 일정한 부피의 용기에 기체 A를 넣고 반응시켰을 때 시간에 따른 A의 농도를 나타낸 것이다.

시간(분)	0	1	2	3	4
A의 농도(M)	2.0	1.75	x	1.25	1.0


이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, k는 t° C 에서의 반응 속도 상수이다.)

- ㄱ. x는 1.5이다.
- ㄴ. 반응 속도식은 $v = k[A]^2$ 이다.
- C. 3분일 때 생성물의 몰수 합이 반응물의 몰수보다 크다.

- **29.** 그림에서 (가)와 (나)는 A(g) \rightarrow B(g)의 $\frac{1}{[A]}$ 4 반응에 대해 A의 초기 농도와 온도가 다른 $\mathbf{z}^{(M^{-1})}$ 건에서 시간에 따른 $\frac{1}{[A]}$ 을 각각 나타낸 것 $\frac{1}{0.5}$ 이다.
- (가)에서의 [A]가 (나)에서의 [A]의 2배가 되는 시간(분)은?

30. 그림 (Y)는 반응 I과 반응 Π 가 일어날 때 시간에 따른 생성물의 농도를, (L)는 I과 Π 중 하나의 반응에서 시간에 따른 용기 내 입자를 모형으로 나타낸 것이다. (L)에서 반응물의 초기 농도는 1 M이다.

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 온도와 부피는 일정하다.) [3점]

- ㄱ. (나)는 표에 해당한다.
- ∟. Ⅱ는 2차 반응이다.
- □. x는 <u>3</u>이다.

31. 다음은 정반응과 역반응의 반응 차수가 모두 1차인 화학 반응식이다

$$A(g) \stackrel{k_1}{\longleftrightarrow} B(g)$$

 $(k_1$ 과 k_2 는 각각 정반응과 역반응의 반응 속도 상수이다.)

표는 온도 T_1 과 T_2 에서 이 반응의 정반응의 반응 속도 상수 (k_1) 와 평형 상수(K)를 나타낸 것이다.

온도	$k_1(s^{-1})$	K
T_1	1	2.5
T_2	2.5	1

이 반응에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은?

[3점]

- ㄱ. 정반응은 발열 반응이다.
- $L. k_2$ 는 T_1 에서가 T_2 에서보다 작다.
- \Box . T_1 에서 평형 상태일 때 k_1 은 k_2 보다 크다.

32. 다음은 기체 A와 B가 반응하여 기체 C가 생성되는 반응의 화학 반응식과 반응 속도식을 나타낸 것이다.

$$2A(g) + B(g) \rightarrow C(g) \quad v = k[A]^m[B]^n$$

(k는 반응 속도 상수이고, m과 n은 반응 차수이다.)

표는 강철 용기에서 A와 B를 반응시켰을 때, 반응 전 기체의 부분 압력과 반응 시간이 t초일 때 기체의 전체 압력을 나타낸 것이다.

실험	반응 전 기체의	부분 압력(기압)	t초일 때 기체의
걸임	А	В	전체 압력(기압)
I	6	6	9
П	6	12	15
Ш	12	6	12

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, 실험 I \sim 표에서 온도는 같다.) [3점]

- ㄱ. m+n은 3이다.
- ㄴ. 실험 Π 에서 t초일 때 C의 부분 압력은 1.5기압이다.
- \Box . 실험 \Box 에서 2t초일 때 기체의 전체 압력은 9기압이다.

<빠른정답>

- 1) ④
- 2) ⑤
- 3) ①
- 4) ⑤
- 5) ①
- 6) ③
- 7) ⑤
- 8) ④
- 9) ④
- 10) ①
- 11) ④
- 12) ③
- 13) ④
- 14) ③
-
- 15) ①16) ⑤
- ,
- 17) ②
- 18) ③
- 19) ③
- 20) ③
- 21) ⑤
- 22) ①
- 23) ③
- 24) ⑤
- 25) 1
- 26) ∟,⊏
- 27) ¬,∟,⊏
- 28) ¬,⊏
- 29) 12
- 30) ¬,⊏
- 31) ¬,∟,⊏
- 32) ∟,⊏

