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Even as I've become more adept atpnavigating the rapids of [the Net| | have
A}

experienced a steady decay in my ability to sustain my|attention.| g | ¢ &
: yeseR L e =2 Negative

Al - ——
A Knowing that the depth of&rthought: is tied directly to the intensity of=gur
""" B
attenéiveness] it's hard not to conclude that as we adapt to the intellectual environment of [the Net |
S — | | IS

our:-thinking.

*rapids G-F **chip away ~2 XF 4] ZIof LjiCt
@ becomes shallower

@ turns out to be rational

(® creates our experiences

@® gets connected with others

® reflects the quality of our lives
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My own reading and thinking habits have shifted dramatically since | first logged on
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to the Web fifteen years ago or so. | now do the bulk of my reading and researching
~ol e E

online. And my brain has changed as a result. Even as I've become more adept at
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navigating the rapids of the Net, | have experienced a steady decay in my ability to
atalistct = REet ZEI[2E]], Fuf

sustain my attention. As | explained in the Atlantic in 2008, “What the Net seems to
FEBHT

be doing is chipping away my capacity for concentration and contemplation. My
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mind now expects to take in information the way the Net distributes it: in a swiftly
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moving stream of particles.” Knowing that the depth of our thought is tied directly to
Rt

the intensity of our attentiveness, it's hard not to conclude that as we adapt to the

PIT ECTESES X 3otct

intellectual environment of the Net our thinking becomes shallower.
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since + ‘2 (SHAIH) ; 2002, three years ago

+ have Vpp ~
S+ have Vpp < for + 2121 ; three years
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My own reading and thinking habits have shifted dramatically since | first logged on to
the Web fifteen years ago or so.

| now do the bulk of my reading and researching online.

And my brain has changed as a result.

Even as I've become more adept at navigating the rapids of the Net, | have experienced
a steady decay in my ability to sustain my attention.

As | explained in the Atlantic in 2008, “What the Net seems to be doing is chipping away
my capacity for concentration and contemplation.

My mind now expects to take in information the way the Net distributes it: in a swiftly

moving stream of particles.”
Knowing that [

M it hard not to conclude that as NG
I our thinking becomes shallower.
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Cognitive computing is supported by machine learning and deep learning technology, which allows

computers to autonomously learn from data.

How does it

work?

oflA]
Google's voice recognition algorithms, for instance, work from a massive training set, but

it's still not nearly big enough to predict every possible word, phrase or question.

*autonomously AFE X2 *albeit B/E ~0/7l= 5/‘%‘“
@ Why Advanced Computers Need Repetitive Practice r
@ Improving Deep Learning Algorithms: A Human Task
@ Pa!ths to Technological Progress: From Complex to Simple
A;}@Aﬂémputers Will Drive Out Human Teachers from the Classroom
"""Cognitive Computing Enables Computers to Learn Autonomously
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Cognitive computing is supported by machine learning and deep learning technoclogy,

which allows computers to autonomously learn from data. This technology means
IeHoZ
computers can change and improve their algorithms by themselves, without being

explicitly programmed by humans. How does it work? Put simply, if we give the

computer a picture of a cat and a picture of a ball, and show it which one is the cat,

we can then ask it to decide if subsequent pictures contain cats. The computer
Cheol, 1 59

compares other images to its training data set (i.e. the original cat image) and comes

~Z AOfLict

up with an answer. Today's machine learning algorithms can do this unsupervised,

xgxol, Zh=gix| ok2

meaning they do not need their decisions to be pre-programmed. The same principle

applies to even more complex tasks, albeit with a much larger training set. Google's
HE&Ict **H|2 ~0]7|= BiLt
voice recognition algorithms, for instance, work from a massive training set, but it's
o] 4| CHze|
still not nearly big enough to predict every possible word, phrase or question.
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Cognitive computing is supported by machine learning and deep learning technology,
which I

This technology means computers can change and improve their algorithms by
themselves, without being explicitly programmed by humans. How does it work?
Put simply, if we give the computer a picture of a cat and a picture of a ball, and show it
which one is the cat, we can then ask it to decide if subsequent pictures contain cats.
The computer compares other images to its training data set (i.e. the original cat image)
and comes up with an answer.

Today's machine learning algorithms can do this unsupervised, meaning they do not
need their decisions to be pre-programmed.

The same principle applies to even more complex tasks, albeit with a much larger
training set.

Coogle's voice recognition algorithmes, for instance, work from a massive training set, but

it's still not nearly big enough to predict every possible word, phrase or question.
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