괴델의 불완전성 정리 반박+a
게시글 주소: https://orbi.kr/00072540180
불완전성 정리란?
제1정리. 페아노 공리계를 포함하는 어떠한 공리계도 무모순인 동시에 완전할 수 없다. 즉 자연수 체계를 포함하는 어떤 체계가 무모순이라면, 그 체계에서는 참이면서도 증명할 수 없는 명제가 적어도 하나 이상 존재한다.
제2정리. 페아노 공리계가 포함된 어떠한 공리계가 무모순일 경우, 그 공리계로부터 그 공리계 자신의 무모순성을 도출할 수 없다.
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
불완전성 정리 요약
B="페아노 공리계를 포함하는 어떠한 공리계"
제1정리. B는 무모순인 동시에 완전할수 없다
제2정리. B가 무모순이면 B로부터 B자신의 무모순성을 증명할수 없다
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
준비물
모든 논리체계는 명제논리로 나타낼수 있다
명제논리는 무모순성과 완전성이 증명되어있다
명제논리의 무모순성을 증명하는 논리체계 역시 명제논리로 나타낼 수 있다
이말은 명제논리로부터 명제논리 자신의 무모순성을 증명할수 있다는 말임
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
제1정리 반박
B는 명제논리로 나타낼 수 있다
따라서 B는 무모순이고 완전하다
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
제2정리 반박
B는 무모순이고 완전하다
따라서 "B는 무모순"는 참
B를 명제논리로 나타낼 수 있다
명제논리로부터 명제논리 자신의 무모순성을 증명할수 있다
따라서
B(명제논리)로부터 B(명제논리)자신의 무모순성을 증명할수 있다
"B는 무모순" and "B(명제논리)로부터 B(명제논리)자신의 무모순성을 증명할수 있다"
위 명제가 참.
따라서
B가 무모순이면 B로부터 B자신의 무모순성을 증명할수 있다
가 참
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
결론
1. B는 무모순인 동시에 완전하다
2. B가 무모순이면 B로부터 B자신의 무모순성을 증명할수 있다
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
괴델의 문제
G="G는 증명불가능"
괴델은 "G가 증명불가능"함을 증명함
그런데 이는 G를 증명한것
G의 내용과 모순
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
완전성 증명
1. (Not A->모순)->(A의 증명있음)
2. (Not A->모순)<->A
3. A->(A의 증명있음)
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
공리의 실체
1. (A가 거짓->모순)->(A의 증명있음)
2. (A의 증명없음)->(A가 거짓 and 무모순)
3. (A는 공리)->(A의 증명없음)
4. (A는 공리)->(A가 거짓 and 무모순)
무모순=참
5. (A는 공리)->(A가 거짓)
6. (A가 참)->(A는 공리아님)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
레전드거지 0 0
내돈…8ㅁ8
-
나도 금테에피의뱃이 되고싶다 11 0
참 쉽지 않군
-
이쿠라 사랑해
-
어디까지 가능할까요? 3 1
영어1 화작 백분위 1컷 확통사탐 만점 지방한 ㄱㄴ?
-
해외선물 해보고싶다 20 0
마이크로 골드 나스닥 1계약만 해볼까
-
오늘 하루종일 밖에 안 나감 0 0
덥대서
-
요즘 은근 자주 나오는 전치사+관계사+to부정사 0 2
영어는 참 효율적인 걸 좋아하는 것 같습니다. 긴 말도, 짧게 줄여서 전달하려는...
-
ㅈㄱㄴ
-
스블 7 0
어떄여?
-
일본 가서 사케 마셔보신분? 8 1
무슨맛임요?
-
이제 소주가 맛없음
-
이륙시켜주세요! 15 1
(1) [짧칼럼] 영어 내신 공부법 | 오르비 처음으로 잡담 태그 떼고 쓴...
-
일단 오늘은 안 자고 8 0
낼부터 어케 잘지 생각해보실까
-
아니 사실 좆도 안죄송합니다. 전 내년에 서울대 경제학과 26학번이 될 남자기...
-
그때는 미기확을 2학년때 다 끝냈음 11 0
1학기에 미적분1 확통 2학기에 미적분2 기벡 이런식으로
첫번째 댓글의 주인공이 되어보세요.