"Chapter. 0 - 등차수열의 합"
게시글 주소: https://orbi.kr/00072252175
“Chapter. 0 – 등차수열의 합”
안녕하세요 ‘한국외대 부’입니다. 언제나 여러분 입시에 가장 먼저 앞서있고,
길을 내주는 길잡이가 되어드리도록 최선을 다해 앞장서겠습니다!
오늘의 제목은 “등차수열의 합”입니다. 모든 칼럼은 저의 자료의 내용으로 진행됩니다!
등차수열은 앞 “등차수열”칼럼에서 설명 드린것과 같이 이미 잘 알려진 함수이기에 출제하기 까다로운 부분이 많습니다.
특히 등차수열임을 직접알려주지 않고 그 합으로써의 표현을 통해 등차수열을 알려주는 문제들이
가장 많이 출제가 되는 동시에 학생들이 많이 틀리는 대표 문항 중에 하나입니다.

등차수열의 합에 대한 일반항과의 관계입니다.
등차수열의 합의 일반항은 ‘d/2n^2+an’입니다. 이는 시그마를 이용해여 증명이 쉽게 가능합니다.
이를 이용하여 우리는 등차수열의 합과 일반항 사이에 독특한 관계를 찾을 수 있습니다.
바로 서로 미적의 관계를 갖고 있음을 알 수 있습니다. 이것은 시그마의 계산을 통해 등차수열의 관계에서 서로
미적의 관계를 갖고 있는 것입니다.(완벽한 미적의 관계가 아닌 최고차항을 중심으로 한 미분의 개념)
그리고 이때는 최고차항의 계수만을 사용합니다!! 상수항은 따로 우리가 직접 구해야합니다!
이해하기 쉽게 사진과 함께 살펴봅시다. 등차수열의 합을 미분하면 최고차항인 n에 대한 계수를 취하고
그 나머지 상수항은 ‘S(1)=a(1)’임을 사용하여 알아내야 합니다!
이는 복잡하거나 찾기 어려운 식에서 등차수열의 일반항을 바로 찾을 수 있다는 장점을 가지고있습니다.

상수항을 직접 꼭 구하자!
등차수열의 합은 상수항이 “0”인 이차식이기에 만일 복잡한 알 수 없는 수열의 합이
상수항이 0인 이차식이라면 바로 그 수열이 등차수열꼴 임을 확인할 수 있습니다. 그리고 그 합의 식을 미분하여
등차수열의 일반항까지 바로 구할 수 있습니다!
다만 여기서 중요할 점은, 일반항을 적분하게 되면 적분상수가 붙지만 우리는 적분상수는 고려하지 않는 다는 점입니다.
그 이유는 수열의 단원에서 미적분의 개념을 빌려 사용하는 것이기에(시그마의 원리를 적용하여)
적분상수는 따로 추가하지 않고 계산합니다!!
또한 이렇게 적분상수는 고려하지 않기에 우리는 등차수열의 합에서 일반항을 구할 때 미분 한뒤
그 첫째항은 직접 대입해보아 구해야합니다.
-> 앞에서 설명한 S(1)=a(1)
예를 들어서 알아봅시다.
Q. 모든 n에 대해 식을 만족하는 어떤 수열의 합 Sn= 3n^2 + 7n일 때 이 수열의 5번째 항을 구하여라.
-> 먼저 수열의 합이 상수항이 0인 이차식이니 이 수열의 일반항은 등차수열의 꼴임을 알 수 있습니다. 따라서 위 식을 미분한 ‘6n + 7’에서 최고차항인 6만 취하고 나머지는 S(1)=a(1)을 통해 구해봅시다!
a(n)=6n + ?이니 S(1)=3 + 7= 10, 따라서 a(1)= 6 + ?= 10이므로
a(n)=6n+4임을 알 수 있습니다.(단 이때, n존재하지 않는 이미지입니다.2)
그리고 구하는 항은 5번째의 항이니 n에 5를 대입하여 34임을 쉽게 알 수 있습니다.
우리가 이 개념을 알지 못했을 땐 이 문제를 풀기 위해 ‘S(n)-S(n-1)’를 계산해야 하는데 이렇게 되면 계산이 정말 극도로 복잡해집니다. 안 그래도 2차식인데 이를 계산하려함은 시간이 많이 들겠죠..
이렇게 등차수열의 합과 그 일반항의 관계에 대해 알아보았습니다.
하지만 제가 등차수열 첫 칼럼에서 강조한 부분을 다시 보시면!
수열을 단순히 수의 나열로 바라보는 것이 아닌 함수로써의 해석이 가능하다고 했습니다.

함수로써의 해석이 가능하도록 생각해야합니다.
등차수열의 합은 상수항이“0”인 이차식입니다. 이 사실을 이용하면 우리는 등차수열의 합이 무조건 “0”을 근으로 갖는 이차함수로써의 해석이 가능하다는 것을 알 수 있습니다. 특히, 문제를 보면 수열의 합이 최대가 되는 지점/수열의 합이 처음으로 음수, 양수가 되는 지점을 물어보는 경우가 많습니다.
이럴 때 따로 계산을해서 직접 그 항을 구하지 말구 우리는 최대가 되는 지점 = 이차함수의 꼭짓점/ 수열의 합이 처음으로 음수, 양수가 되는 지점 = 이차함수의 해(0이아닌 해)임을 사용하면 귀찮고 복잡한 계산 없이 쉽게 구할 수 있습니다!
오늘의 내용은 여기까지 입니다!
앞으로 더 많은 내용들로 꾸준히 찾아올테니 좋아요과 구독 한번씩만 눌러주시고 기다려주세요!
고민이나 공부상담, 원하시는 칼럼의 내용이 있으시면 댓글이나 쪽지로 남겨주세요.
다음 칼럼에 반영하여 작성하겠습니다!
https://cafe.naver.com/suhui/28780393
자료의 원본 자료는 여기서 확인하실 수 있습니다!
자료 구매나 후기는 댓글이나 들어오셔서 톡으로 연락 주시면 자료안내 도와드리겠습니다!
수험생의 길잡이가 되어드리는
'한국외대 부'였습니다 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
2.27.
-
N제 하루컷 2
수학 n제 하루컷 해본 분들 있음?
-
오르비언들 10
-
장: 하체 근력 강화 및 협응근 발달+운동이 빨리 끝남 단: 하는 동안 숨이 ㅈㄴ...
-
완전 이뻐요 감사합니다
-
시대갤 입결 ㄷㄷ 12
물2갤 만큼 멋있게 학교 학과 다 까진 않지만 입결 좋네 분발하자 오르비
-
https://m.site.naver.com/1Abu2
-
유우키상 슬프네 0
사과문내용이 슬퍼
-
안되셨나보네 그럼 저분은 한번 더 보시는건가 ㄷㄷ
-
하 뱀지팡이 그려진거 입어보고 싶어
-
야구해보고싶다 0
ㅠㅠㅠㅠ
-
심심한데 8
뭐해야함뇨?
-
시발
-
물2갤 입결봐라 ㄷㄷ 14
안씻은 보람이 있네 ㄹㅇ 멋있누
-
3순환 문제 넘 적은 거 같아서 많이 수록한 문제집 없나
-
인강보는중.. 0
발명님의 인강..
-
그래도 어디가서 대학이름 말할때 누가 얕잡아보지는 못할 정도만 됐으면 했는데...
-
8시쯤 조용한데 자유로운 분위기 너무 좋았음..
-
저희 월즈 두번 먹고 오면 뭐 안해주시나요..
-
올만에 롤 어대 4
사ㅣ러ㅡㅁ말고
-
인강 1/5 돌림 언매 거의 노베 모고보면 2개정도 틀리는듯 방핟에 언매를 걍...
-
기쁘다 5
못난이 레어 다 처분함 도와주신 분들 감사해요
-
김범준=무지개맛 6
스타팅블록 듣고있는데 맨날 ‘와 존나 잘풀었다 ㅋㅋ‘ 하면서 영상 on 하면 내...
-
ㅈㄴ 치열하노
-
돌다가 다시 나한테 와서 또 포기함ㅋㅋ 하…
-
은테달고싶다.. 10
맞팔구
-
지인선 N제 다시 뽑고 있습니다 많은 관심 감사해요 ㅎㅎ
-
내신 때 공부했어서 기억이 남아있긴 한데 그냥 혼자 정리하는게 나을까요 아니면...
-
신기허다
-
수능 잘봣니 먼저 묻지 않을게
-
윤도영 조교 2
매트릭스 쓰는게 유리하냐 물으니까 답변이 알 아서 하 셈 ~ 진짜 별루다
-
대형마트 한 층이 전부 다이소… 내일 살거 눈썹칼 탁상거울 바구니
-
이번에 수강한 영어 강의 정말 만족스러웠습니다! 특히 지우개 해석법을 통해 문장에서...
-
https://m.site.naver.com/1Abu2
-
할게없어서 3
유실물센터에 1월에 잃어버린 지갑 있는지 찾아보는중
-
흠..
-
집공은 집공 레넥톤 집공 판테온 이거 두 개 w에 집공 바로 터져서 좀 사기임
-
치킨시킴 9
행복해
-
Adhd가있는데 그래서그런지 스카가 너무 질려서요ㅠ..
-
기억나는 사람 4
구쏘개 하이샵 전기쥐 라유 키갈정도...? 틀딱이라 기억력 퇴화함
-
사탐 버리고 국어만 가르쳐야겠음뇨 특히 사문은 과외할 수준에 한참 못 미치는 듯합니다..
-
섹.시.하다
-
문제 좀 6
심심한에
-
삼수생 기적의 추가모집 합격 116
안녕하세요 코요리입니다! 합격증을 들고 인사드리게 되어 정말 기쁘고 또...
-
공하싫 0
에휴이
-
저 별명이 블루베리 청소기임 방금 제가 지은 별명임
-
1. 룸메 2. 같은 동아리 부원 3. 서로 말섞다가 전적대 오픈할 05들
너무 늦게 자료를 올려드려 죄송합니다! 앞으로 더 자주 빨리 올려드릴 수 있도록 노력하겠습니다!