"Chapter. 0 - 등차수열의 합"
게시글 주소: https://orbi.kr/00072252175
“Chapter. 0 – 등차수열의 합”
안녕하세요 ‘한국외대 부’입니다. 언제나 여러분 입시에 가장 먼저 앞서있고,
길을 내주는 길잡이가 되어드리도록 최선을 다해 앞장서겠습니다!
오늘의 제목은 “등차수열의 합”입니다. 모든 칼럼은 저의 자료의 내용으로 진행됩니다!
등차수열은 앞 “등차수열”칼럼에서 설명 드린것과 같이 이미 잘 알려진 함수이기에 출제하기 까다로운 부분이 많습니다.
특히 등차수열임을 직접알려주지 않고 그 합으로써의 표현을 통해 등차수열을 알려주는 문제들이
가장 많이 출제가 되는 동시에 학생들이 많이 틀리는 대표 문항 중에 하나입니다.

등차수열의 합에 대한 일반항과의 관계입니다.
등차수열의 합의 일반항은 ‘d/2n^2+an’입니다. 이는 시그마를 이용해여 증명이 쉽게 가능합니다.
이를 이용하여 우리는 등차수열의 합과 일반항 사이에 독특한 관계를 찾을 수 있습니다.
바로 서로 미적의 관계를 갖고 있음을 알 수 있습니다. 이것은 시그마의 계산을 통해 등차수열의 관계에서 서로
미적의 관계를 갖고 있는 것입니다.(완벽한 미적의 관계가 아닌 최고차항을 중심으로 한 미분의 개념)
그리고 이때는 최고차항의 계수만을 사용합니다!! 상수항은 따로 우리가 직접 구해야합니다!
이해하기 쉽게 사진과 함께 살펴봅시다. 등차수열의 합을 미분하면 최고차항인 n에 대한 계수를 취하고
그 나머지 상수항은 ‘S(1)=a(1)’임을 사용하여 알아내야 합니다!
이는 복잡하거나 찾기 어려운 식에서 등차수열의 일반항을 바로 찾을 수 있다는 장점을 가지고있습니다.

상수항을 직접 꼭 구하자!
등차수열의 합은 상수항이 “0”인 이차식이기에 만일 복잡한 알 수 없는 수열의 합이
상수항이 0인 이차식이라면 바로 그 수열이 등차수열꼴 임을 확인할 수 있습니다. 그리고 그 합의 식을 미분하여
등차수열의 일반항까지 바로 구할 수 있습니다!
다만 여기서 중요할 점은, 일반항을 적분하게 되면 적분상수가 붙지만 우리는 적분상수는 고려하지 않는 다는 점입니다.
그 이유는 수열의 단원에서 미적분의 개념을 빌려 사용하는 것이기에(시그마의 원리를 적용하여)
적분상수는 따로 추가하지 않고 계산합니다!!
또한 이렇게 적분상수는 고려하지 않기에 우리는 등차수열의 합에서 일반항을 구할 때 미분 한뒤
그 첫째항은 직접 대입해보아 구해야합니다.
-> 앞에서 설명한 S(1)=a(1)
예를 들어서 알아봅시다.
Q. 모든 n에 대해 식을 만족하는 어떤 수열의 합 Sn= 3n^2 + 7n일 때 이 수열의 5번째 항을 구하여라.
-> 먼저 수열의 합이 상수항이 0인 이차식이니 이 수열의 일반항은 등차수열의 꼴임을 알 수 있습니다. 따라서 위 식을 미분한 ‘6n + 7’에서 최고차항인 6만 취하고 나머지는 S(1)=a(1)을 통해 구해봅시다!
a(n)=6n + ?이니 S(1)=3 + 7= 10, 따라서 a(1)= 6 + ?= 10이므로
a(n)=6n+4임을 알 수 있습니다.(단 이때, n존재하지 않는 이미지입니다.2)
그리고 구하는 항은 5번째의 항이니 n에 5를 대입하여 34임을 쉽게 알 수 있습니다.
우리가 이 개념을 알지 못했을 땐 이 문제를 풀기 위해 ‘S(n)-S(n-1)’를 계산해야 하는데 이렇게 되면 계산이 정말 극도로 복잡해집니다. 안 그래도 2차식인데 이를 계산하려함은 시간이 많이 들겠죠..
이렇게 등차수열의 합과 그 일반항의 관계에 대해 알아보았습니다.
하지만 제가 등차수열 첫 칼럼에서 강조한 부분을 다시 보시면!
수열을 단순히 수의 나열로 바라보는 것이 아닌 함수로써의 해석이 가능하다고 했습니다.

함수로써의 해석이 가능하도록 생각해야합니다.
등차수열의 합은 상수항이“0”인 이차식입니다. 이 사실을 이용하면 우리는 등차수열의 합이 무조건 “0”을 근으로 갖는 이차함수로써의 해석이 가능하다는 것을 알 수 있습니다. 특히, 문제를 보면 수열의 합이 최대가 되는 지점/수열의 합이 처음으로 음수, 양수가 되는 지점을 물어보는 경우가 많습니다.
이럴 때 따로 계산을해서 직접 그 항을 구하지 말구 우리는 최대가 되는 지점 = 이차함수의 꼭짓점/ 수열의 합이 처음으로 음수, 양수가 되는 지점 = 이차함수의 해(0이아닌 해)임을 사용하면 귀찮고 복잡한 계산 없이 쉽게 구할 수 있습니다!
오늘의 내용은 여기까지 입니다!
앞으로 더 많은 내용들로 꾸준히 찾아올테니 좋아요과 구독 한번씩만 눌러주시고 기다려주세요!
고민이나 공부상담, 원하시는 칼럼의 내용이 있으시면 댓글이나 쪽지로 남겨주세요.
다음 칼럼에 반영하여 작성하겠습니다!
https://cafe.naver.com/suhui/28780393
자료의 원본 자료는 여기서 확인하실 수 있습니다!
자료 구매나 후기는 댓글이나 들어오셔서 톡으로 연락 주시면 자료안내 도와드리겠습니다!
수험생의 길잡이가 되어드리는
'한국외대 부'였습니다 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
친구가 공연하는 모습을 보니 감개무량하네요
-
라면 4
갑자기 냄비 말고 뚝배기에 끓이면 어떨지 궁금해서 뚝배기에 라면 끓이는 중
-
할 줄 아는거: 피아노, (통)기타 일렉도 같은 학원에서 배워볼가..
-
손절 당한건가요?
-
현우진도 그정도 일정은 아닐거같은데
-
김승리 없었으면 재수도 못할 정도로 성적 처참했을거임 국어는 그나마 괜찮아져서...
-
선배한테 25뉴런 교재 받았는데 이거 들어도 ㄱㅊ을까요?
-
오레어 쳐먹을거라고
-
애옹애옹 0
그르릉 냐옹
-
어쩌면 나 금손일지도
-
죄다 애니야 무슨
-
언매 개념 복습할 수 있는 복습지나 학습지는 컨텐츠 뭐가 있나요?
-
지로함수 좌표 세팅해서 계산하는 거 ㅈㄴ 약했는데 어떨 때 하고 어떨 ㅒㄷ 안...
-
옯붕아.
-
블라먹는지 테스트 13
-
애니 ㅈㄴ 빡세네 인간으로 변형하기도 너무 어렵 차라리 사람ㅁ이 더 쉬움
-
안녕하세요 지금까지 화학공학을 지망하다 물리치료과를 생각중인 예비 고2입니다!...
-
새터 다녀옴 8
06과 8살차이라니 (반수아님, 학생회땜에감 ㅎ)
-
오르비에서는 괜찮지만 외부에서 하면 큰일 나는 짓들 3
애니 프사 / 아이돌 프사 / 디시콘 프사
-
강남대성은 개나주자
-
강민철 그렸는데 왜 블라 안먹냐
-
흠..
-
피곤하군 4
-
개념 복습하거나 쎈 푸는게 재밌는게 가능함?
-
아침에 안하면 국어공부가 의미없다고 느껴짐 뭔지알지 저녁에 국어공부할바엔 안한다ㅋ...
-
할거면 개추 수시원서 시즌 이후에는 재밌어질듯
-
https://orbi.kr/00072256981 절댓값 해석과 개형추론이 어려워서...
-
내가 저능해서 너무 힘드러
-
부라에서 볼때도 있음?
-
덕코먹기님 프사 5
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 아 제가봐도웃기네요… ㅈㅅㅎㄴㄷㅈㅅㅎㄴㄷ..
-
시대재종 1
월례 볼때 탐구같은 경우 과탐 시험지 다 주나요? 아니면 보는 과목만 주나요
-
강사가 아닌가보죠?
-
수학수학하고 울엇어
-
러셀 HS1이면 방학때 공짜로 바자관 쓸 수 있는거임? 2
걍 수능공부 안하고 가서 자격증 공부해도 되는거임? 공짜로? 한달 딱 하고 나가는 사람 있음?
-
반박해보시죠
-
뭐 딱히 특별한 반찬은 아니지만 그래도...
-
정법 vs 경제 0
작수 정법 45였는데 표점 이슈도 있고 해서 경제로 바꿀까 고민중 생윤이랑 한지도...
-
재수공부고민+계획훈수 10
작년에는 미대입시했어서 작수26431(화작,확통,생윤,사문)받은 학생입니다. 1....
-
호감도나 이미지 써드림 44
-
가톨릭대 자연공학계열 통학이 1시간 반 걸립니다. 가톨릭이 공대를 잘 안 밀어주지만...
-
일단 라면에는 잘 안 어울림 약간 억지로 먹는 느낌
-
호오오님 프사 2
-
진지합니다 8
현정훈쌤 결혼하셨나요?
-
똥냄새 안나쥬?ㅋ
-
담주에도 이 재미없는 똑같은 루틴이라니... 나도 부라 오자마자 상쾌한 마음으로...
너무 늦게 자료를 올려드려 죄송합니다! 앞으로 더 자주 빨리 올려드릴 수 있도록 노력하겠습니다!