[수학칼럼] 음함수 미분
게시글 주소: https://orbi.kr/00072241785
안녕하세요 저능부엉이입니다
오늘은 음함수 미분에 대해 공부해고자 합니다
사실 전에도 같은 내용으로
칼럼을 올렸지만 블라인드를 당했기에
좀 더 내용 보충해서 올리게 됐습니다
음함수 미분에서 강조할 점은
변수간의 관계 파악
만이 있습니다
이게 무슨 말이냐면
241127입니다
이문제에서 주어진 데로 먼저 식을 세워봅시다
여기서 k는 접점의 좌표입니다
그럼 k에 대해 생각을 해봅시다
k는 t의 따라서 값이 달라집니다
한마디로 k는 t에 대한 함수라고 볼 수 있는것입니다
그렇다면 이런식으로 둘 수 있겠네요
k를 g(t)로 둔 것입니다
이후 식을 나눠봅시다
이렇게 두 개의 식이 나왔습니다
여기서 주목할 점은 f(t)값을 구하기 위해서는 g'(t)값이
필요한 상황이고 문제에서 t와 g(t)값은 주었습니다
(f(a)=-e^3/2에서 그 시점의 t값과 g(t)값 구할 수 있음)
따라서 g'(t)값을 구하기 위해 왼쪽 식을 미분하고
값을 구한후 대입만 하면 답이 나오게 됩니다
이 문제에서 보여드렸듯이 음함수 미분 문제에서는
만약 f'(t)에 값을 구하라고 하면
1.t에 대한 변수
2.구하고자하는 함수에 관한 식
3.t와 변수의 관계식
4.정답상황에서의 t와 변수의 값 정보
가 주어지게 됩니다
보통은 문제가
1.t에 대한 변수 설정하기
(앞의 문제에서는 변수가접점이있음)
2.구하고자하는 함수에 관한식 세우기
3.t와 변수의 관계식 세우기
4.정답상황에서의 t와 변수 값 정보를 식에 넣어서 얻기
5.미분, 대입
의 방식으로 문제가 풀리게 됩니다
다른 문제로도 보여드리자면
240930입니다
아까 말했던 대로 먼저 세타에 대한 변수로 선분CP을
k(세타)로 두겠습니다
이후 k에 대한 식과 넓이에 관한 식을 뽑아 보겠습니다
이렇게 되는군
이후 두번째 식을 사용해 정답상황에서 k값을 구하면
다음과 같습니다
이후 첫째 식과 둘째 식을 미분하고 대입하면
이렇게 바로 답이 나오게 됩니다
비슷하게 230929도 풀어봅시다
먼저 s를 t에 대한 변수로 보고
s와 t에 대한식, g(t)에 대한 식을 뽑으면
최소가 될때 s에의 접선과 (t,0) 이 수직인점을 이용하면
이렇게 둘 수 있습니다
h'(1)=1/g'(h(1)), s가 0일때 g(t)가 1이기에
정답상황에서 s(t)=0, 대입하면 t=2입니다
따라서 우리는 g'(2)의 값을 구해야 합니다
이제 두 식을 미분하고 대입하면
이렇게 간단히 답이 나오게 됩니다
하나 유의할점은 s를 굳이 s(t)로 두지 않아도 됩니다
s'(t)를 ds/dt로 생각하면
이런식으로 똑같이 답이 나오게 됩니다
단지 유의할 점은 s가 t에 대해 변화하는
일종의 함수임을 명심해야하는것입니다
오늘은 음함수에 관해 알아봤습니다
앞에서 말했듯 식 두개 세우고,
변수 설정하는게 다인 유형입니다
특히 변수간의 관계가 중요하기에 앞에서같이
s를 s(t)로 두는것처럼하면 t와의 관계를 더 잘
관찰 할 수 있습니다
다들 읽어주셔서 감사하고 다음에도
좋은 칼럼으로 돌아오겠습니다
(좋아요 이건 진짜 누르지 마셈 잡담으로 올림)
0 XDK (+10,010)
-
10,000
-
10
-
원터 못견뎠음 어떤 식으로라도 안하면 안하게 되서.. 친구들 안보는 거의 외로움은...
-
화작 16 17분 정도 가끔 1 2 개 틀려요 시간 더 줄여야 되나요?
-
어쩌다보니 그 길을 걷게된거임
-
한명탈릅했나 2
쪽지가 줄어듦
-
패티 불맛 유무도 그렇고 소스양도 마음대로
-
가능??
-
주간지 언제쯤 나오는지, 어법 강의 안보이는데 원래 좀 늦게 나오는건지 궁금합니다..!
-
2025 뉴런 미적분 사버렸는데 교환안되나 ㅜ
-
legend screen 101이러면서 화면녹화 감지됐다고 그럼 근데 패드는 또 잘 되는거 같고
-
삼차함수에서 두 허근과 한 실근을 가질 때 x^3+ax^2+bx+c에서 세근의 합이...
-
"강의 하나당 1만원"…피 튀기는 경쟁률에 '대리 수강신청' 등장 4
"인기 날짜·시간 선착순으로 마감 중. 성공 시 강의당 만 원." (서울=뉴스1)...
-
이미 몇 번 뵌 적 있는 선배님이라 반갑네요
-
시대 라인업 평가해주세요..(옮길까 고민중입니다.) 2
국 손창빈 심찬우 수 강기원 최지욱 김성호 영 정석현 물2 현정훈 지1 홍은영 나진환
-
질문하면 답변 가능하실까요 ?? 궁금한데 몇개 있어서
-
원글: https://orbi.kr/00072248045/ 요약:"발상적인 풀이...
-
아니 1
방금 아파트 어린이집 앞 지나가는데 내 허리만한 남자애가 엄마랑 가다가 나 보고...
-
다 때려치고 푹 쉬고싶다
-
과탐 노베인데 잇올기숙 드가서 공부만 ㅈㄴ할건데 과탐해도됨?? 2
지역인재도 노릴가 생각중
-
아 오늘 새벽 2
벌칙으로 노래불렀음뇨 ㅋㅋ
-
시대컨이 뭐임? 2
시대인재 미적분만 들으려 하는데 공통 컨을 아예 안 주나요? 어쩔 수 없이 두개 다 해야하는건가
왜 하트와 흐으응이 없지?
그거 썼다가 저격먹었잖음...

고거 봤는데... 아닙니더오 내려서 아쉬웠는데.. 감사해뇨
오 순화본 롤백이당
201130 이거 개인적으로 음함수미분법 도움 엄청 됐어요
20수능 가형 30번 음함수 미분 없이 풀기
Implicit Function Theorem