[수학칼럼] 부정적분에서의 극값
게시글 주소: https://orbi.kr/00072240860
안녕하세요 저능부엉이입니다
오늘은 부정적분 파트에 대한 칼럼으로 찾아왔습니다
오늘 다뤄볼 주제는 부정적분에서의 극값입니다
부정적분에서 극값이라는 워딩이 나온다면
여러분이 해야할 행위는 99.99% 미분입니다
그럴때 우리는 다음과 같이 행동해야 합니다
1. 미분하기 (미분할 수 없다면 미분할 수 있게 만들자)
2. 극소,극대,극값은 도함수의 부호변화 유심히 관찰
예시 문항을 통해 설명하자면
230620 입니다
먼저 극값에 관한 워딩이 나온다면 공통영역에서는
필연적으로 미분을 할 수 밖에 없다는 것을 명심하세요
하지만 미적 선택자가 아니면 이대로 미분하기가
어려워 보입니다. 그렇다면 미분가능하게 만듭시다
미분이 이렇게 됐습니다
그렇면"g'(x) 의 부호가 1과 4에서 음에서 양으로 바뀐다"
이사실을 사용해야 겠습니다(극솟값이기 때문에)
|f(x+1)|-|f(x)|라는 함수를 그리기는 힘드니
|f(x)|에서 x좌표가 1차이나며 함수값이 같아지는 순간을
생각해봅시다
근데 지점이 총 3군대 나오는군요
하지만 우리에게 중요한것은 극솟값입니다
부호가 -에서 +으로 가는 순간이죠
따라서 |f(x+1)|가 |f(x)|보다 커지는 순간입니다
그렇기에 그림과 같이 x=1과 x=4인점을 찾을 수 있습니다
이후 대칭축이 3이고 f(1)=-f(2)인것을 이용해
계산을 끝내면 바로 답이 나옵니다
231112입니다
먼저 x=2에서 최솟값 0을 지닌답니다
따라서 2에서 극솟값이겠고 미분할 수 밖에 없습니다
우리는 그렇기에 두 가지 식을 얻을 수 있습니다
먼저 1번을 사용해 문제에서 주어진대로 그림을 그리면
이런식으로 나옵니다
(극솟값이기에 부호변화가 2에서 음-양으로 바뀌는게
포인트입니다)
이후 2번식을 사용하면
이런식으로 마무리되고 1/2에서 4까지 적분이기에
간단하게 정답 -1/2가 나옵니다
220620입니다
극값이라는 워딩이 나왔습니다
일단 미분해봅시다
다음과 같이 미분되었습니다
우리는 g'(x)의 부호변화가 단 한번 일어나도록
a값을 만들어야 합니다
일단 f(t)^4은 항상 0이상이기에 2번함수는
오직 a에서만 부호변화가 일어납니다
따라서 적분한 함수와 앞의 1번함수가 공통된 근을 가져서
그 근에서 x축과 접하도록 만들어야 할 것입니다
2번함수가 근을 갖는 지점은 x=a에서만
따라서 가능한 a값은 3,5 뿐입니다
오늘 칼럼의 핵심을 요약하자면
부정적분에서 극값내용이 나올경우 무조건 미분
극값은 도함수의 부호변화가 핵심
이 되겠습니다
사실 어느정도 수학을 하는 사람에게는 매우 쉬운 내용이기도 그럼에도 의외로 극값에서 도함수의 부호변화를 바로 연결 짓지 못하는 사람이 존재하다고 생각해서
행동강령적인 느낌으로 칼럼을 적어 봤습니다
들어주셔서 감사하고 좋아요는 제게 큰힘이 됩니다
다음에도 좋은 칼럼으로 돌아오겠습니다
(재업함 좋아요는 누르지 마셈.)
0 XDK (+10)
-
10
-
ㅅㅂ ㅈ됬다 2
몸무게 앞자리가 +1됨 오늘부터 다이어트
-
이 시대의 인재를 양성하는곳 같은 의미임?? 뭔가 중간에 "의"가 빠지니까 왤케...
-
신기
-
이 커리면 수학100점 가능할까? 아니면 더 고칠 부분같은게 있을까?
-
지하철에서 대참사나는걸 막아줘~
-
그딴과목을 선택한거 자체가 최대의실수임
-
여론은 무조건 약사 욕 하는구나.. 그렇게 간단한 문제는 아닌것같은데
-
쫌 살려주세요 예비창업팀원인데요 팀원이랑 이틀 안에 200명 채우냐 안 채우냐로...
-
인스타에서 봤는데 이왜진 ㅋㅋ
-
이정도면 공대로는 ㅇㄷ랑 비슷함
-
피 쏠리네 거꾸로 보는세상 재밋음 이게 중력의 힘인가
-
아..
-
아웃백갔다가 머리하고 카푸치노사서 햇살 받으며 산책하기
-
저는 건국대 교육공학과를 가고 싶은데 부모님은 충북대 국어교육과를 원하셔요. 어디를...
-
하루 40명 스스로 목숨 끊었다…작년 자살건수 13년 만에 최대 3
작년 1만4천439명 잠정 집계…자살률은 11년 만에 최고 수준 男이 女보다 2배...
-
지하철 좀 답답하고 버스타면서 바깥구경하는게 넘 좋음 그래서 어디 갈때는 늦으면...
-
아 존나 졸려, 2
이리 피곤할꺼면 왜 일어난거니 나의 바디야좀 더 자게 두지
-
정시일반에서는 안쓴 대학도 추가모집때는 많이 쓴다고 들어서요
-
오늘 점심 ㅇㅈ 3
고능부엉이
재업 인 거 알아ㄷ ㅗ 개추 !

좋아요 누르기누가 안 읽고 좋아요 누름ㅋㅋ

나도 눌러야지스카 출근/퇴근 길에 틈틈이 보기 참 좋았어요 감사합니다!!
좋게봐줘서 고마웠어요
퍄퍄
231112풀이에서 최솟값이 어떤근거로 극소라고 판단하신건가요?
함수가 최솟값을 갖는 지점은
상수구간인 경우를 제외하고는 무조건
극솟값인 상태이에요
근데 상수구간은 아니기에
x=2에서 극솟값을 가진다 볼 수 있어요
Goat