수학 칼럼) 체계적으로 문제 읽기 1 (미적 231129)
게시글 주소: https://orbi.kr/00072237485
안녕하세요!
이 글에서 다루어 볼 주제는 수학 문제 읽는 방법입니다.
문제 푸는 방법만큼 읽는 방법도 중요하거든요.
공통에도 충분히 적용되는 내용이지만,
복잡한 함수가 나오는 미적분 선택자들이라면
더 큰 도움이 되리라 생각합니다 :)
문제를 읽을 때 적용되는 논리적인 구조가 있습니다.
1) 내 목표는 무엇인가?
2) 목표를 위해 무엇을 할 수 있는가?
이 2가지를 생각하면 문제의 가이드라인을 잡을 수 있습니다.
예를 들어 볼까요?
23학년도 수능 미적분 29번입니다.
문제를 읽어볼게요.
1) 세 상수 a, b, c에 대하여 함수 가 다음 조건을 만족시킨다.
문제에서 를 줬습니다.
수능 수학에서 등장하는 함수는 3가지로 나뉠 수 있습니다.
완벽히 주어진 함수, 틀만 주어진 함수, 아예 모르는 함수가 있죠.
(각각 접근방법은 다른 칼럼에서 자세히 다루겠습니다.)
는 틀만 주어진 함수에 해당합니다.
a, b, c 값을 구하면 f(x)의 함수식을 완성할 수 있죠.
저는 이렇게 생각했습니다.
목표: a, b, c를 구해서 f(x)의 함수식 구하기
2)
극한값을 줬네요.
분자에는 아직 모르는 f(x)가 끼어 있지만,
분모에는 완벽히 주어진 가 있습니다.
이를 통해서 극한을 대략적으로 파악할 수 있습니다.
위 극한에서 분모는 0으로 수렴합니다.
극한값이 존재하려면 0/0꼴이어야 하겠네요.
저는 이렇게 생각했습니다.
극한값에서 a, b, c에 관한 단서를 얻을 수 있지 않을까?
분자와 분모에 가 공통인자로 있으니까,
f(x) 자리에 를 대입해 봐야겠다는 생각을 했어요.
3)
함숫값을 줬습니다.
와 자연로그의 조합이네요.
저는 대입하기 편하겠다라고 생각했습니다.
그래서 직접 대입해 봐야지 라고 생각했죠.
4) f(x)의 역함수를 g(x)라고 했을 때, 이다.
역함수의 정적분을 구하랍니다.
아직 역함수 g(x)에 대해서는 아무것도 모릅니다.
그래서 g(x)는 접어두고, 일단 f(x)를 구하는 것부터 목표로 잡았습니다.
f(x)를 구하고, 그래프를 그려 보자,
그래프로 역함수 정적분값을 구할 수 있지 않을까?
g(x)는 지금으로썬 구할 수 없네.
'할 수 있는 것'에는 포함되지 않겠다.
(정 안되면 역함수 치환적분도 할 수 있겠구나 라는 생각도 들었어요.
교과서에 직접 언급된 개념이 아니고, 개인적으로 좋아하지도 않아서,
f(x)의 그래프부터 그려 보기로 했습니다.)
정리하자면, 저는 이런 것들을 생각했습니다.
1) 목표: a, b, c를 구해서 f(x) 함수식 구하기
2) 할 수 있는 것: 극한값 관찰하기, f(ln2) 대입하기
문제를 논리적이고 체계적으로 풀 수 있겠죠?
문제 풀기 전에 가이드라인을 미리 잡을 수 있어요.
별 생각 없이 문제를 읽기보다,
문제를 읽으면서 가이드라인을 잡으면
무슨 행동을 해야 할지가 명확해집니다 :)
다음 칼럼에서는 어려운 문제에서
어떻게 체계적으로 문제를 읽을지 다루어보겠습니다.
궁금한 점 있으시면 댓글 달아주시면 성심껏 답변드릴게요!
부족한 글 끝까지 읽어주셔서 감사합니다!
좋아요, 댓글, 팔로우는 작성자에게 큰 힘이 됩니다 :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
만관부
-
내일 일어나서 써주신 분들 모두 100코씩 드릴예정 나쁘게 써줘도 돼요..(울거임)
-
현역에서 멈췄지 아 ㅋㅋ
-
목아파서 죽어나가는중.. 그래도 후기들을 보면서 힘을 얻습니다 Time1은 12명...
-
하나도 안읽히네 국어4달안했다고 폼이 이렇게 떨어지나
-
부모님이 ㅇㅇ 근데 간섭이 좀 존나 심하면 걍 어캐든 자립하는 게 맞겠죠?
-
재밌을거 같은데 물론 나도 당할듯
-
애들이 다 귀여워 보임. 남자밖에 없는 학교서도 그렇고 오르비에서도 다 귀여워 보임
-
ㅈㅂㅈㅂㅈㅂ
-
오늘 그린 그림 모음 87
많관부
-
몽크
-
이 문장에서 3
, even the so-called nonliving elements여기서...
-
으아악
-
언매 91 ->화작 94 (2틀) 미적92->확통98(1틀) 나머지 그대로 결론...
-
나왔다 5
-
하면 역으로 얻어맞을듯ㅜ
-
12월 1월 오르비는 진짜 리젠 ㅈ박은 노잼 커뮤였는데 8
2월은 또 다른 느낌의 노잼 오르비노 ㅋㅋㅋㅋㅋ 근데 뭐 나중에 시간 지나면 다들...
-
개색ㅈ랓둪 다 ㅌ토맘ㄱ내졍어 얃다털너먹오 기절한다음 6달ㄷ ㅣ에 깨어내고샢더
-
안녕하십니까 한대산 영어입니다 올 한 해 본격적으로 활동 시작하기에 앞서서 제 소개...
-
나랑 맞짱뜰사람 7
선착순한명
-
이게 뭐지 싶다
-
파스타는 써먹을 데도 많고, 건강하고, 싸고, 맛있고, 생각보다 쉽다 꼭 시도해보자...
-
김기현쌤 아이디어 해서 다 들을 필요는 없을거같아서 일단 theme9 합성함수...
-
(일부다처제 + 개족보) 가계도에다 (신분제 + 연도)까지 섞어놓으면 언제 신분제가...
-
진짜 개판이네
-
~하다 라고 누가 의견을 내면 ~~냐!!!!그럼 ~~한 거냐!!!라고 하고 ~~해서...
-
어제 투데이 0
100은 넘었네 거의 안했는데 신기해요
-
소방관 분들이십니다 경기도 일산의 어떤 119 안전센터에서 소방관 분들이 60층...
-
강추 댄디킴
-
요즘 매일 이러네
-
걍 시대갤 보면 7
진짜 뭔가 싶음. 하는 행동 보면 존나 음침하고 도태된 느낌 이성이든 동성이든 ㅈㄴ...
-
일진녀 수현 vs 현우진T 공포의 일대일 성대모사 ㄷ 고소 안당하나
-
니뭘똥죽
-
베릴) 아 맞다 여러분들 제가 오해한 게 있어요 플옵 전에 패치 버전을 몰랐던 이유...
-
슬럼프가 오네요 1
공부는 안하는데 불안감은 쌓이는.. 막상 공부하려고 앉으면 집중도 안되구 ㅜㅜ...
-
과외 잡아버렸다… 10
나좀짱인듯
-
거기서 거기 셋다 이용자들이 도태됐다 생각하지않음 그냥 할말하고 노는공간이지
-
수학2 2
흐름 조으다
-
독학 예정ㅇㅇ 해설이 좋아야함
-
체격이 진짜 말이 안됨.. 거인 같은데 엄청 날렵함요
-
이감 슬림 패키지 살려고 하는데 이감 슬림이랑 이감 파이널이랑 차이점이 뭔가요??...
-
러셀 김지영 0
김지영쌤 올인원 안듣고 유형독해부터 들으면 힘들까요?
-
여자 한명 인스타 캐서 염탐하고 남자랑 있네, 오늘 하원 언제 했냐 등 존나...
-
에라이 씨발 내인생 얼마나 세월을 날려야 하는 거야
-
한판더 한판더 한판더
-
07 현역입니다. 질문에 대한 답변들로 책 예쁘게 꾸며서 인증글 남겨볼게요. 수특은...
-
다시 런칠 각을 잡아야겠다
-
안녕하세요 저능부엉이입니다 오늘은 부정적분 파트에 대한 칼럼으로 찾아왔습니다 오늘...
-
미적분 자작문제 0
꽤 난이도 있습니다!
26
f(x) 보고 e^x랑 이차함수 합성된 함수라고 인지하고 (가) 조건보고 등식 2개 뽑기 가능 (나)조건보고 등식 1개 뽑기 가능이라고 보고 f(x)알 수 있고 구해야되는게 역함수 정적분이고 역함수 치환적분으로 구하면 되니까 그러면 계산문제네 하고 문풀했는데 저런 생각을 더해야되는구나…
댓글이랑 제 글이랑 내용은 거의 비슷해요!
'목표 / 할수있는것' 구조로 문제를 읽으시면
더 체계적으로 접근할 수 있을 거에요 :)
좋은 글 감사합니다!