-
한양대 상경이랑 서강대 자전 어디가 좋을까요? 과는 공대를 가고 싶어서 서강대가...
-
착한 말 하기 1일차 15
-
중간에 한두번 잠깐씩 됐다가 몇시간씩 저러길 반복중... 집에 와이파이 안되서...
-
내가 하도 제곱?을 못 외우니까 17×17 289 이팔구!! 이빨을 17개 팔아~!...
-
몇번이고 널 지우고 싶어~~~~
-
화미생지로 33344를 받으면 어느 라인의 대학을 갈 수 있는지 궁금합니다!!...
-
출첵 3
완
-
수면제 먹기 4
현생탈출하기
-
지금보단 많이 밝았네
-
개강하면 도서관에서 살아야지
-
그문제 쳐다도 안보고 찍고나와서 몰랐음...
-
?? 오르비 들어가잇으면 댓글 안 보임
-
디엠으로 동아리 관련해서 얘기나눴는데 몸 존나 뜨거워지네 오티 때 현실에서 말할땐...
-
전화추합에서만 1바퀴도는경우 있음??
-
오리비 2
-
제 전적대가 전문대라 학점이 거의 만점에 가까운데 괜찮은 학교에서 3후반~4점대...
-
먼가 낭만 있음 몸써서 돈 버는 것도 어떨지 궁금하고
-
대학생도 다같이 있는
-
07 정시파이터 목요일 19~22시 수학 토요일 9~12시 수리논술 19~22시...
헉,, 이게 아직 안 풀렷군
옆에 있는 놈한테 물어보면 안되겠죠?

이게 아직까지도 안 풀리고 있었네주어진 문제 풀이
1. 함수 g(x)의 도함수 g'(x) 구하기
주어진 함수 g(x)는 다음과 같습니다.
g(x) = (2xf(x)) / (x^2 - 1)
몫의 미분법을 이용하여 g'(x)를 구합니다.
g'(x) = [ (2f(x) + 2xf'(x))(x^2 - 1) - 2x(2xf(x)) ] / (x^2 - 1)^2
식을 정리하면,
g'(x) = [ 2f(x)(x^2 - 1) + 2xf'(x)(x^2 - 1) - 4x^2f(x) ] / (x^2 - 1)^2
g'(x) = [ 2f(x)(x^2 - 1 - 2x^2) + 2xf'(x)(x^2 - 1) ] / (x^2 - 1)^2
g'(x) = [ -2f(x)(x^2 + 1) + 2xf'(x)(x^2 - 1) ] / (x^2 - 1)^2
2. 방정식 g'(x) + f''(x) = 0 분석
주어진 방정식은 다음과 같습니다.
g'(x) + f''(x) = 0
위에서 구한 g'(x)를 대입하면,
[ -2f(x)(x^2 + 1) + 2xf'(x)(x^2 - 1) ] / (x^2 - 1)^2 + f''(x) = 0
양변에 (x^2 - 1)^2을 곱하면,
-2f(x)(x^2 + 1) + 2xf'(x)(x^2 - 1) + f''(x)(x^2 - 1)^2 = 0
3. 중간값 정리 적용을 위한 함수 정의
새로운 함수 h(x)를 다음과 같이 정의합니다.
h(x) = -2f(x)(x^2 + 1) + 2xf'(x)(x^2 - 1) + f''(x)(x^2 - 1)^2
그러면 주어진 방정식은 h(x) = 0이 됩니다.
4. h(x)의 특정 값 계산
* h(0) 계산: f(0) = 0이므로 h(0) = f''(0)(-1)^2 = f''(0) 입니다.
* h(x)의 극한값 계산: x가 1 또는 -1에 가까워질 때, (x^2 - 1) 항 때문에 h(x)는 발산합니다.
5. 중간값 정리 적용
* 경우 1: f''(0) = 0 인 경우
h(0) = 0 이므로 x=0은 방정식 h(x)=0의 해가 되어 실근이 존재합니다.
* 경우 2: f''(0) > 0 인 경우
h(0) > 0 이고, x가 1 또는 -1에 가까워질 때 h(x)는 음의 무한대로 발산합니다. 따라서 구간 (-1, 0)과 (0, 1)에서 중간값 정리에 의해 h(x) = 0인 실근이 각각 적어도 하나 존재합니다.
* 경우 3: f''(0) < 0 인 경우
h(0) < 0 이고, x가 1 또는 -1에 가까워질 때 h(x)는 양의 무한대로 발산합니다. 따라서 구간 (-1, 0)과 (0, 1)에서 중간값 정리에 의해 h(x) = 0인 실근이 각각 적어도 하나 존재합니다.
결론
어떤 경우든 열린 구간 (-1, 1)에서 방정식 g'(x) + f''(x) = 0의 실근이 존재합니다.
gpt검거
Gemini임
맞는 풀이라 보기 어려울 듯 합니다ㅠ
Ai이자식
아
x=0이 실근인가요