2024 7월 학평 수학 손해설 (전과목)
게시글 주소: https://orbi.kr/00068728567
2024 7월 고3 학평 수학 풀이.pdf
풀이가 길다보니 오류가 있는걸 모르고 넘어가는 경우가 종종 있습니다. 오류 두 군데(13번, 미적 29번) 우연히 발견해서 수정했는데 추가로 발견되면 알려주시면 감사하겠습니다. 7모 수학에 대한 질문 받으며, 질문은 꼭 제 풀이를 보고 하실 필요는 없습니다. 7모 수학 문제와 관련 있는 질문이기만 하면 됩니다.
공통
[5번] 딱 보자마자 미분하고 다시 적분할 뻔~ 뭐 그렇게 풀어도 되긴 하지만 대입만 해서 풀 수 있는데 굳이
[8번] 3점짜리지만 조건을 좀 재밌게 준 듯
[9번] 무게중심이라는 개념 되게 오랜만에 보는듯. 근데 이거 미적분 선택자 기준으로 정답률 90%대 뜨던데 그 정도로 쉬웠나 ㅋㅋㅋ
[10번] 위치 변화는 속도 적분한거, 이동거리는 속도의 절댓값 적분한거.. 이것만 알면 크게 어려울 것 없을 것 같은 문제
[11번] 등차수열이니까 aₙ = dn + b로 두고 얼기설기 풀었다.
[12번] 정답률 분포를 보니 여기부터 줄줄줄 털린 사람들이 많은 것 같다. 개인적으로도 12번부터 좀 빡빡하다고 느끼긴 했다. 원함수 연속성 따지고, 도함수 연속성 따지고, 그런 다음 주기성 이용한 적분 하면 되는데 과정이 꽤 복잡하다.
[13번] 도형에 취약해서 삽질했다. 막상 다 써놓고 보니 그렇게 안 복잡한데 도형 특성상 눈에 안 보이기 시작하면 답이 없다.
[14번] 이거는 y=f(x) 그래프 그려놓고 보면 y=f(x) 그래프와 y=g(x) 그래프가 당연히 x=2에서 접해야 하는게 눈에 보인다. 일단 모르겠으면 그래프 그리고 보자.
[15번] 이거 나만 자꾸 98 나와서 삽질했나 ㅋㅋㅋ 잘 생각해보니 an이 0이어도 an+1이 1이 되더라... an이 0인 경우를 계속 고려하지 않아서 삽질했던 문제. 주관식으로 나왔으면 100% 틀렸겠네
[19번] 그림이 너무 커서 해설 쓸 공간이 부족해서 최대한 압축해서 썼다. 킹받네
[20번] 이거 접하는 경우가 아니라는 얘기가 많이 돌아서 직접 풀기 전까지는 뭔 말인지 몰랐는데 풀면서 뭔 말인지 알게 되었다. 진짜 낚일만하긴 한 듯 ㅋㅋㅋ 물론 나는 힌트를 다 봐버려서 안 낚였다 자랑이다
[21번] 엄밀히 말하면 대칭성 이용해서 푸는 문제지만 딱 봐도 f(0)=2가 되어야 할 것 같이 생기긴 했다.
[22번] 함수의 연속 개념만으로 이렇게 어려운 문제를 낼 수 있구나... a<b<8이고 a,b는 자연수니까 이 점을 이용해서 케이스를 좁혀나가는 방식으로 풀었다
확률과 통계
[25번] 풀다보니까 곱셈 공식의 변형이 나온다. 근데 뭐 이 정도는 당연히 외워야지?
[26번] 문제 상황을 약간 복잡하게 준 것 같지만 결론은 그냥 주사위 세 번 던진 것 중에 같은 눈이 나오는 경우가 있는 확률을 구하라는 문제.
[27번] 같은 것이 있는 순열 문제인데 케이스가 2개밖에 없어서 아주 쉽게 풀린다.
[28번] a×b+c+d가 홀수일 때 a, b가 모두 홀수일 확률을 구하는거니까 a,b가 모두 홀수인 경우, 모두 짝수인 경우, 하나만 홀수인 경우로 케이스 분류 시행했다. 4점짜리답게 좀 까다로운 문제
[29번] 이 문제도 풀다보니 산술기하평균이 나왔다. 간접 출제되는 범위도 잘 공부해둬야 할 듯
[30번] f(1)+f(2)가 짝수라는 조건이 있으므로 이에 대해서 케이스 분류하면 생각보다 쉽게 풀 수 있다.
미적분
[26번] 도형이 나와서 당황했지만 답 구하는 과정은 어렵지 않다.
[27번] 계산이 메인인 문제인 것 같아서 계산 과정을 아주 자세하게 적어놨다.
[28번] 미적분 4점짜리 모두 만만하지 않았다. f(x)가 증가하는 함수니까 f'(x)=0의 판별식이 0 이하여야 한다.
[29번] 작수 29번이랑 비쥬얼이 비슷하다. 절댓값이 껴있어서 체감상 어렵게 느껴질 수 있지만 등비수열에 절댓값 씌우면 그냥 첫째항과 공비가 모두 양수가 될 뿐이다.
[30번] 일단 딱 봐도 적분 못하게 생겼으니 우함수 기함수 성질 이용해서 풀면 된다. f(ln 3/2)가 뭔지 몰라서 난감했는데 적분하고 보니 f(ln 3/2)가 싹 다 없어져버렸다.
기하
[27번] 오랜만에 풀어보는 공간도형 문제지만 그냥 쏘쏘했다.
[28번] 도형에 취약해서 이번에 기하 4점짜리 셋 다 모두 삽질했다. 내가 수능을 다시 친다면 기하는 하면 안될듯... 이 문제에서 계속 삽질하고 있다가 삼각형 AF'S와 삼각형 AFR이 합동인걸 알게 됐는데 그 뒤로는 매우 쉽게 풀렸다. 합동 발견 못하면 시간 뺏긴다는 점에서 2022 수능 26번과 비슷한듯
[29번] 이거 좀 복잡하게 푼건지는 모르겠지만 어쨌든 내 스타일대로 풂
[30번] 이거 진짜... '도형 약함' + '공간도형 오랜만에 봄' + '그림 너무 커서 풀이 공간 부족' 3박자 이슈로 가장 오래 고민한 문제이다. 풀이 방법이 다양할 것 같은데 나는 이면각을 이용해서 풀었다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
솔직히 4
킁은 레전드임요
-
옵치할사람 0
나랑같이해줘
-
오르비 참 1
오르비스럽다
-
과외생 밥사줄건데 28
뭐 사주지 생일이래서 과외끝나고 고기나 한번 사줄까했는데 얘네가 워낙잘먹어서 좀...
-
사흘에 한 번도 충분
-
허리아파
-
추가모집 0
75455갈 지방국립대 있을까요?ㅋㅋ
-
꼭 마지막에 이런걸로 시간뺏기는데 이런거 어캐빨리함?? 지금이라도 시간있을때...
-
올해 내 목표 2
수탐퍼거
-
"271표 부족" 양양군수 주민소환 무산…"지역 카르텔에 패배"(종합) 2
(양양=뉴스1) 윤왕근 기자 = 여성 민원인 상대 성비위와 뇌물수수 논란으로 추진된...
-
모솔특) 4
연애안해봄
-
솔직히 수능은 국어빼고 노잼임
-
작년 6모 9모 백분위 93 / 95입니다. 수능은 94구요 언매 한 번더...
-
하락장 뭐지 1
진짜 쉴새없이 돈 빠지네
-
난 민주가 젤이뻐보이는디
-
1년안씻으면 3
물1물2만점 맞고 표점으로 동강대 의대 ㄱㄴ?
-
다이소에서 건기식 판다고 약사 협회에서 반발이 일어났대요
-
영화를 너무 많이 봐선지 몰라도 시정명령 영장발부 체포영장집행 캬캬 늦게까지...
-
봉감독님이 판때기 들고있는거 같음
-
오늘 관독 앞자리분 냄새가 유난히 심했음...
-
음.. 3
내 머리를 믿는 공부 한 번 해볼까 믿을만한 머리는 아닌거 같긴 한데
-
이거 a맞으려면 며칠 안씻어야 되나요
-
이제 새학기도 시작하고 과외를 구하는 사람이 많을 것 같아서 뻘글같은 정보글을...
-
짐싸기 귀찮네 5
하지만 서울을 가야해
-
비틱게이
-
기출분석 다시하니까 신세계가 보임
-
제가 작년에 신텍스, 알고리즘 들었는데 수능떄 3이떴습니다. 복습을 잘 안해서...
-
경제학과에 관심있는 학생들에게 도움이 될 것 같아 서울대 경제학부의 커리큘럼을 설명...
-
피규어 정리함 2
ㅁㅌㅊ?
-
같이 롱런하자 한 5수까지
-
아니,, 누가 자꼬 내글이랑 댓글에 좋아요 누르지??? 1
걍 누가 눌렀나보다했었는데 일관성있게 이러는거보니까 누가 작정하고하는거같은데,,,
-
극한상쇄 0
극한상쇄 해설 수분감 어디에있나요?
-
아주 좋아 이번엔 꼭 조장 피한다
-
약대 공부 버거운가요? 평소 과탐공부할때도 남들 한두번 보면 어느정도 이해하는것도...
-
다이어트 할 거야.. 25
응응.. 일단 간식부터 끊고 과자 정 먹고 싶으면 딱 절반만 먹고 이틀 이상...
-
럭키비키뭐야
-
그러나 도망친 집에는 자그마치 밀린 11주치 데일리 유대종이.. 도망친 곳에 낙원은 없다
-
헉 0
성적이랑 글씨 잘쓰는거랑 관련이 깊어요?
-
오야스미
-
내 주변에는 다 실패함...
-
육아물 몇개 본게 전부인데 나름 볼만했네요 그 이후에는 노벨피아로..
-
미적분 김기현쌤커리타고있고 기본개념(파데) 실전개념(아이디어) 까지했는데 4점은아직...
-
술땡김 5
ㅠ
-
여성향 작품은 자주 봄 사실 여성향 작품이라고 불리는것들도 댓글만 아니면 나름...
-
일부 풀이 공개 그만 알아보자..
-
이번에 안정권으로만 썼는데도 다 떨어져서 추가모집 넣고 있는데 부모님이 안전빵으로...
-
과연 사올까
-
빅포텐 어윽 시벌 18
뭐가 존나 위독한 맛이지만 몸에 좋은 약을 먹은 기분이다 이번주는 그냥 어싸랑...
선생님 손 풀이가 가장 좋음
수학황 ㄷㄷ