물리) 왜 가가속도와 가가가속도는 없나요?
게시글 주소: https://orbi.kr/00043314615
안녕하세요! '야매물리' 김동휘 인사드립니다 :)
지난번 <당신의 물리 성적이 오르지 않는 5가지 이유> 에 보여주신 오르비언 여러분의 뜨거운 환영에 힘입어 두 번째 글로 찾아오게 되었습니다 ㅎㅎ
두 번째 글의 주제는 바로,
.
.
.
.
.
.
<왜 가가속도와 가가가속도는 없나요?> 입니다!
첫 글에서 '물리학 교육과정의 당위성'을 이야기하며 언급했던 내용인데요, 사실 이걸 주제로 정하기까지 많은 고민을 했습니다.
크게 2가지 이유가 있었는데요...
첫째, 입시or수능에 도움이 될 내용인가?
가장 크게 고민했던 이유입니다. 오르비는 입시 커뮤니티이고, 수험생 여러분도 당연히 입시에 도움이 되는 내용을 필요로 할 텐데 과연 입시 또는 수능과 관련이 적은 내용의 글이 필요할까 하는 걱정이 있었어요.
둘째, 고등학교 과정에 없는 수학이 필요하다.
설명을 위해 고등학교 교육과정에 없는 수학 개념을 하나 사용해야 합니다. 이것이 학생들의 이해를 오히려 더 방해하고 개념에 혼란을 주지는 않을지 걱정이 되었어요.
그럼에도 불구하고!
제가 첫 글에서 뿌렸던 떡밥의 빠른 회수를 위해,
물리를 선택하지 않은 학생들도 친숙할 속도와 가속도에 대한 주제이기에,
그리고 최상위권 오르비언 여러분의 실력을 믿기에,
<왜 가가속도와 가가가속도는 없나요?> 를 주제로 선택하게 되었습니다.
각설하고 바로 시작하죠!
위치의 시간에 대한 변화율이 속도,
속도의 시간에 대한 변화율이 가속도,
그렇다면 가속도의 시간에 대한 변화율은?? 가가속도?? 왜 없는 거지??
많은 물리러들이 한 번 쯤 이런 고민을 해보셨을 것이라 생각합니다.
그리고 혹시 (용기를 내어) 선생님께 질문을 해보았다면, 아마 이런 답변을 받으셨을 것 같아요.
"아~ 뉴턴 제2법칙에 의해서 F=ma잖아! 힘에 의해 결정되는 변수가 가속도라서 그래."
저는 이 답변은 반쪽 짜리 답이라고 생각합니다.
왜냐하면 이 답변은,
"가속도가 필요한 이유"에 대한 대답이지 "가가속도가 필요 없는 이유"에 대한 대답은 아니거든요.
왜 속도와 가속도까지만 필요한지,
왜 가가속도부터는 필요가 없는지,
이것에 대해 대답해줄 필요가 있습니다.
역학이란, 물체의 운동을 다루는 학문입니다. 그렇다면 물체의 운동이란 뭘까요?
물체가 시간 t=0 일 때 초기 위치 x_0 에 있었다고 하죠. 이 물체가 시간 t=ε 만큼 지난 후에, 초기 위치 x_0 가 아닌 다른 위치에 있다고 합시다.
이 경우 우리는 이 물체가 운동했다고 말합니다. 시간이 지남에 따라, 물체의 위치가 변화했기 때문이죠.
물리학에서는 물체의 운동을 수학을 이용하여 기술합니다.
변수들을 정리하면 다음과 같아요.
"어? 속도와 가속도도 필요한 것 아닌가요?"
맞아요, 하지만 아직은 아닙니다. 속도와 가속도는, 물체의 운동을 기술하는 과정에서 자연스럽게 도입될 거예요.
우리는 물체의 초기 위치 x_0 는 알지만, 물체의 나중 위치는 모릅니다. 물체의 운동을 기술하기 위해서는 물체의 나중 위치를 알아야겠죠?
우리가 알고 있는 정보가 물체의 초기 위치이기 때문에, 이걸 이용해서 물체의 나중 위치를 구하는 게 바람직할 거예요.
여기서 한 가지 가정을 할 거예요. 바로 시간 변화량 ε이 매우 작다고 가정하는 것입니다.
수학 잘하는 학생들은 이미 ε으로 놓을 때부터 미소량이구나 짐작하셨을 것 같아요~
물체의 운동을 매우 짧은 시간 간격으로 잘라서 보겠다는 거예요. 매우 짧은 시간 간격의 운동들을 나중에 합치면 우리가 보는 물체의 운동이 되는 거죠.
여기서 고등학교 과정에서 배우지 않는 개념이 하나 필요합니다. 바로 <테일러 급수>입니다.
테일러 급수는 한 점에서 계산된 도함수들의 합으로 함수를 표현하는 방법인데요, 다음과 같습니다.
우리에게 친숙한 sin 함수와 cos 함수 또한 테일러 급수를 이용하여 표현할 수 있어요.
(원점 x=0에서 테일러 급수를 구한 것)
자, 다시 물체의 운동으로 돌아와서 물체의 나중 위치 x(ε)을 테일러 급수로 표현해보겠습니다.
그런데 시간 변화량 ε이 매우 작다고 가정했기 때문에, ε에 대해 이차 이상의 항들을 모두 근사할 수 있습니다. 즉, 다음과 같이 두 개의 항으로 물체의 나중 위치를 표현할 수 있어요. (식1)
(식1)
우변에서 우리는 물체의 초기 위치 x(0)와 시간 ε을 알고 있습니다. 즉, 남은 하나 dx(0)/dt 만 알게 된다면, 물체의 나중 위치를 구할 수 있게 되겠죠!
그래서 새로운 변수 dx/dt 를 도입할 필요가 있습니다.
바로 우리가 잘 아는 물체의 속도입니다. 즉 dx(0)/dt 는 v(0), 물체의 초기 속도가 되는 것이죠.
(식1)에서 확인할 수 있듯이, 물체의 초기 위치와 초기 속도를 알면 물체의 나중 위치를 구할 수 있습니다.
어 그러면 나중 위치를 구했으니까 끝난건가?
아닙니다. 나중 위치를 구하기 위해 속도라는 새로운 변수를 도입했기 때문에, 이에 대한 기술 또한 필요해요. 즉 나중 속도 v(ε) 또한 구해야 합니다.
위치의 경우와 같은 방식으로, 테일러 급수를 이용하여 나중 속도 v(ε) 또한 표현할 수 있습니다. 마찬가지로 이차 이상의 항들은 근사했어요. (식2)
(식2)
역시 마찬가지로, 우변의 v(0)와 ε은 각각 초기 속도와 시간으로 우리가 아는 정보지만, dv(0)/dt 는 모릅니다. 나중 위치를 구할 때처럼, 이 dv(0)/dt 를 알 수 있다면 물체의 나중 속도를 구할 수 있는 것이죠.
그런데 우리는 실험적으로, 물체에 작용하는 알짜힘 F와 물체의 속도 변화량 dv/dt 가 비례한다는 것을 알고 있습니다. 바로 뉴턴의 제2법칙이죠.
이때 속도 변화량을 가속도 a라고 정의합니다. (비례상수인 m은 우리가 잘 아는 물체의 질량이고요.)
따라서 물체에 작용하는 알짜힘을 통해 물체의 가속도를 결정할 수 있게 되었습니다. 그리고 이를 이용하면 (식2)로부터 물체의 나중 속도를 구할 수 있습니다. 즉, 우리가 물체의 운동을 기술하기 위해 도입한 모든 변수를 구할 수 있게 된 것이죠.
정리하면 다음과 같습니다.
"물체의 운동을 기술하기 위해 속도와 가속도를 차례로 도입했고, 가속도의 경우 알짜힘에 의해 결정된다. 이렇게 하여 우리가 도입한 변수를 모두 구할 수 있다. 즉, 속도와 가속도만을 도입하여 (가가속도나 가가가속도가 필요 없이) 물체의 운동을 기술할 수 있다."
자 이제
왜 가가속도와 가가가속도가 없는지, 이해가 되셨을까요 ㅎㅎ
몇몇 학생들은 "다른 방식으로도 물체의 운동을 기술할 수 있지 않나요?" 라고 질문할 수도 있을 것 같아요.
물리학을 공부하는 아주 바람직한 자세라고 생각합니다!!
이차 이상의 항을 근사했는데 그걸 3차 이상으로 바꾸면 안 되는지,
또는 뉴턴 제2법칙을 사용하지 않고 다시 한 번 테일러 급수를 이용하여 가속도를 구하면 안 되는 것인지 말이죠.
제 대답은 다음과 같습니다.
"직접 해보면 이 방법이 가장 효율적인 방법이라는 것을 알게 될 거예요."
여기서 가장 효율적이라 함은 가장 적은 개수의 변수와 식을 사용하는 것을 말합니다. 속도와 가속도, 그리고 뉴턴 제2법칙을 이용한 방법이 가장 효율적으로 물체의 운동을 기술하는 방식입니다. 물리학의 발전 과정에서 가장 효율적인 방식을 채택한 것이죠 :)
이상으로 <왜 가가속도와 가가가속도는 없나요?> 에 대한 설명을 마치겠습니다.
최대한 쉽게 설명하려고 노력했지만 부족한 부분이 있을 것이라 생각합니다. 잘 이해되지 않는 부분이 있으면 댓글로 남겨주세요! 친절하게 답변해드리겠습니다 ㅎㅎ
긴 글 읽어주셔서 감사합니다.
야매물리 김동휘입니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅈ반고 선생 특 1
수업하기싫어서 발표수행<—개많이함 주요과목아닌데도 5~10분 발표는 기본으로...
-
올해에도 적용이 되는 게 맞는 건지 궁금합니다. 교과이수 가산에서 내신반영으로 바뀐...
-
수특 국어 독서 303p 9번문제 3번선지 14억중 1/2인 7억이 유류분이고...
-
애니 프사는 왜 하시는건가요?? 오르비 밈인가? 내가 생각하는 똑똑하고 멋있는...
-
배민켜보니까 집 앞에 24시간 크로플가게있길래 신기해서 산책겸 나가봤더니 간판도...
-
재수생인데 일단 본인은 지금 너무 어지러움 내가 화2는 올해 처음하는데 이렇게...
-
【시 전문】- 오세영 흙이 되기 위하여 흙으로 빚어진 그릇 언제인가 접시는 깨진다....
-
좋은아침 4
-
궁금
-
방금 도저히 참을 수 없어서 댓글을 남기고 왔습니다 특정 단어를 감지하면 또 자동...
-
재수 학원 0
지금은 대학교 다니는 중이고 좋은 학교 다니고 싶어서 다시 수능 준비하려고 하는데...
-
오늘은 윤하가 왔는데요 아직 4일동안 비와이 비비 잔나비 에스파 악뮤 싸이가 남음 ㄹㅇㅋㅋ
-
얼리 맹수 기상 4
"진짜 맹수"
-
ㅊㅅㅈT 대기건지 2달되가는데 안풀리네 생2 접어야되나
-
생윤>>경제 2
3 4모 둘다 사문 50 생윤 44 인데 생윤 재미없어서 경제 듣고 있는데 맞는...
-
얌전히 시키는 대로 10회 할 걸 그걸 못 참아서
-
같이 일본 내수용 반주기 들여놓은 노래방가서 일본노래 레이드가고싶어요 오랜...
-
대인직기피증on 0
On
-
세상을 비판해봄 0
양상추 토마토 오이 곤약면 묵 귀리 탄산수
-
경영학과?? 말고는 안떠로오르는데 뭐가 있나요?
-
맨날5시에쳐자니까잠이안옴...
-
지금 뉴런 하는 중인데 다른 애들은 개념 다하고 뉴런 다하고 n제 풀던데 걍 저는...
-
이어폰빼는데 저 고무만 귓속에 남아서 빼는데한참걸림
-
어느게 짱일까
-
인생뭘까요 8
-
또 체했네 1
먹을수있는게없다 참
-
잇올 0
잇올대기 10명안쪽이라는데 6모 지나면 빠질까요? 지방 잇올이라 ㅜㅜ 중간에 어디다닐까요
-
이윤희 고석용 1
컨텐츠는 닥전인건 모를수가 없는데... 강의력(스킬 포함), 전달력 측면에서는...
-
이런거 개웃김 ㅋㅋㅋㅋ­ㅋㅋ
-
재종vs 과외+독재 (경험 조언 훈수 부탁드릴께요!) 0
안녕하세요 조언을 구하고 싶어서 글쓰게 되었습니당 군대 다녀와서 반수를 하게되는데...
-
텅텅 비었군 9
다가올 6母의 영향인가
-
난이도 : (둘 다) 수능 한국사 수준
-
아 근데 전여친 카톡 프로필 봤는데 여자랑 사귀더라 4
낮에 확인하고 얼빠짐
-
반수 고민 3
오랜만에 오르비에 들어옵니다. 글 쓰는 재주가 없어, 그리고 술김에 쓰는 마당에...
-
자퇴조언 5
고2 18살 이관데 여고라서 이과도 너무 적고 그냥 내신 진짜 망함거같아서...
-
왜이러지 사람은 쉽게 변하지 않는구나 후...
-
원점수 몇인가요?? 그리고 원점수 92면 백분위 백이었나요?
-
미쳤네 0
https://youtube.com/shorts/8WR28vB5clo?feature=...
-
I text a postcard send to you 1
Did it go through
-
와 어케 14대 14로 똑ㄱ같이 나오지 ㄷㄷ
-
한시 쓰기 개 힘드네 ㄹㅇ
-
국어황분들 0
국어 인강뭐해야되랒 정하기 너무 피곤한데 그냥 피램으로 끝내도 되나요 솔직히 시간도...
-
글은 지울거 다 지웠고 46
이제 스크랩 해둔것만 대충 옮겨놓으면 된댜….
-
ㅇㅈ 8
1분 뒤에 지우고 잘게요 모두 잘자요!! 펑
가가...? 누가 생각나네요...
고대 네임드...
그럼 왜 와와와속도는 없나요?
와흐흐흐헣
앗 네이버 블로그에서 봤었는데 여기서 보니 반갑습니다 :) 잘 읽었어요
감사합니다! 앞으로는 오르비에서 자주 인사드릴게요 ㅎㅎ
재밌어요 슨상님
감사합니다! 다음에도 재미있는 주제로 찾아오겠습니다
레이디가가
가가가르헨티나
흠,,이건 뭐 도도함수 도 아니고
사실 라그랑주 역학에서 범함수 f(x, x^., t) 로 라그랑지안을 나타낼 수 있다 그러므로 필요없다라고 주장할수도 있지요
좋은 말씀입니다. 뉴턴 역학이 곧 라그랑주 역학이니까요 :)
가가가가가가?
이거 써오는게 대학 일물 첫 과제였던거 같은데 기억이 새록새록
와! 개인적으로 정말 바람직한 과제라고 생각합니다ㅋㅋ 학생들 입장에서는 좀 당황스럽겠지만 교수님께서 '진짜' 물리학을 알려주고 싶으셨던 것 같네요

조금 어렵긴 하지만 잘 읽었습니다 :)감사합니다! 최대한 쉽게 풀어쓴다고 노력했는데 써놓고 보니까 조금 어렵다는 생각이 들더군요...ㅎㅎ; 다음에는 조금 더 쉬운 주제도 다뤄볼게요~~

레이디가가차량의 운동에서 승차감을 측정할때 가가속도를 사용한다고 학교 선생님이 언급하셨음 ㅋㅋ
맞습니다. 물리학에서는 가속도까지만 다루지만, 사실 가가속도는 jerk라는 용어로 공학에서는 실제로 쓰인다고 하네요 ㅎㅎ
가가가속도는 없나요
블로그 운영하시는 그분인가요
네 맞습니다. 네이버 블로그 '고삼ing 야매물리'의 꼬북대장입니다. 반갑습니다 :)
가끔 좋아요 눌러주셔서 감사하던...ㅋㅋㅋㅋ
이거보고 이계도함수 버렷다
가속도를 적분하면 속도고 속도를 적분하면 위치인데 위치를 적분하면 뭔지 전부터 궁금했는데 뭔가요?