빡모2권1회나형 문제 2개만 풀어주세요...
게시글 주소: https://orbi.kr/0003144278


0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전 크레파스에요
-
그정도로 유동인구가 많다고? 뷰봇을 넘어선 검색봇 의심도 생김
-
잇올 독재 기숙이 250인데 진짜 이 가격이면 시대기숙가는게 낫네.. 5
잇올 오ㅑㄹ케비싸지 기숙.,
-
졸리네 5
잠온다
-
친목좀 그만하고 뉴비들 질문하면 좀 잘 받아주자는 글이 계속 올라왔었음 올해 현역은...
-
남녀가 거의 만날 수 업었던.. 근데도 판별식이 0보다 큰 사람들이 만앗던..
-
취업에는 지금 학교도 큰 지장이 없지만 여러이유에서 나는 더 높은 학교를 원한다...
-
경제사문 하고 싶었는데 혈육이 경제는 너무 위험하다고 계속 말려서 그나마 흥미있는...
-
일단 연애하다가 같이 쫓겨난 커플만 3쌍 봄
-
이제는 소곱창먹고싶네 ㅋㅋㅋㅋ 걍 음식중독인듯
-
어케 해야댐 ... 06년생인대 병무청 사이트 가서 찾아보고 있는데 잘 몰겟음 ..
-
학교 가는거 너무 무서워..
-
오르비가 아파요 0
ㅡㄱ러게 뷰봇좀 적당히 켜두지 이제야 끄니까 소용이 없잖아
-
폰보고 유튜브보고 오르비보고 하는게 다 스트레스 관리라서 기숙은 별로긴해
-
저는 재종 다니면서 사회 속에서 공부하는 게 훨씬 좋았음
-
뭐부터 해야됨
-
작년 봄까지는 트위스터 박스라는 메뉴가 있었던것같은데 가서 맨날 먹으니까 어느순간...
-
외모에 자신 없는 분들이 학업에 집중 잘하니까 그럴 거 같기도 하면서 학군지가...
-
생기는것같아요 열심히 해보려는 욕심이 있는 자기자신에게 왜이리 열등하냐는 잔인한...
-
지방 메디컬 가고싶다..
-
어카냐 1
개강 떨령 서울권 친구들 있나ㅏ?? ㅜ 오티 어때?
-
반갑습니다 4
오르비언
-
그 대상자가 기분이 나쁠수 있으니 하면 안되는건가 그럼 뒤에서 하는건 괜찮자나
-
헬스 특) 6
근육 붙는 거보다 근육 빠지는 게 훨씬 체감 잘됨.. 2-3일만 쉬어도 느껴짐
-
병신샷~~병신샷~~
-
그래서 혼자하는 게임만 하거나 마인캐르프트처럼 경쟁요소가 적은 게임만 해요
-
헤헤 2
재밌다 ㅋㅋ
-
콕찌르기 2
콕
-
중학교때 페북시절 갑자기 생각나네 뭔가 느낌이 비슷함
-
독재기숙 다녀보신분들 혹시 어때요? 일반독재랑 기숙독재랑 차이 크나요? 10
뭐가 다른지 잘 모르겟어서용
-
올때 3억 정도 뱉어야되지 않나
-
민감도 적어드림 10
헤으응 사실 안적어드림
-
나 ㄹㅇ 바부인가 이래서야 수면패턴 또또 와장창이잖아 ,,백투스퀘어원 암튼 오뿡이들...
-
분명 이 사람 누구지? 이건 또 누구지? 하다가 탈주할듯
-
장난입니다
-
아 마라탕 개땡기네
-
댓글 ㄱㄱ
-
수학 3만 확보하고 국영탐에 올인하는거 < 좀 위험한 생각인가요? 수학 더 늘...
-
채널링크 : https://youtube.com/@siuiru?si=2Jg9ZtBLN2UU9AKJ
-
오늘은 머 안하지 않았나
-
고대생분이였는데 개이쁨 연고티비 디아보다 이쁜듯 공부도 잘하는데 이쁘면 안되는거 아니냐
-
자료 받아서 책장에 쫙 깔아놓으면 간지남 물론 공부를 겉멋으로 하는건 안좋다고 생각하기는 하지만..
-
그만져라 닭집한테지지마라 화난갖 진짜로..;;
-
수능특강에 제시된 FAO 통계는 주요 곡물 즉 밀, 쌀, 옥수수 대상이었는데 여기선...
-
연의 카의 차이가 면접떨 경희의행 감안 할 정도인가? 4
수시에서 두 개다 붙으면 연의 가겠지만 정시는 면접에서 자칫 삐끗하면 메쟈의...
-
흐흐
-
아 수로안쳤다 3
ㅅㅂ
-
1~10 호감도 써드림 42
상처 받으면 안됨
-
수학 n제 1
매년 마다 모든문항이 새롭게 개정돼서 나오는거임? 이해원 2024 시즌2, 2025...
행렬은 왠지 지난 번에도 누군가 올렸던 거 같은..
ㄱ. XY=E 라 합시다. (A^-1 X B^-1 ) (BYA) = A^-1 X Y A = A^-1 A = E 이므로, BYA가 역행렬. 따라서 존재.
ㄴ. 좌 = A^-1 (A+B) B^-1 = (E + A^-1 B) B^-1 = B^-1 +A^-1. 마찬가지로 우변 계산해보면 동일함.
ㄷ. ㄱ에 X=A+B 대입해보면 참임을 알 수 있음. ㄱ,ㄴ,ㄷ 모두 참.
아래문제.
ㄱ. (미분가능함수인) g(x)는 그 도함수인 f(x)값이 0이면서 + -> -로 변하는 곳에서 극대. 문제의 f(x)그래프로부터 g(x)가 x=1에서 극대임을 알 수 있음.
ㄴ. f의 그래프에서 x절편(1,0)을 A, y절편을 B라 하고, (1, f(0))을 점C라 할게요.
g(1)은 그림에서 0~1까지 그래프f(x) 아래쪽(x축 위쪽)에 있는 영역의 넓이이므로
삼각형OAB넓이보다는 크고, 직사각형OACB넓이보다는 작음.
삼각형OAB넓이=f(0)*1/2, 직사각형OACB넓이=f(0)*1. 따라서 참.
ㄷ. 분명 f(x) g(x) < f(0)x (x=0제외)
이 식의 양변을 다시 x에 대해 적분하면 (0,1)에서 적분 g(x) dx < (0,1)에서 적분 f(0) x dx = f(0)/2. 따라서 참. ㄱ,ㄴ,ㄷ 모두 참.
아래문제 ㄷ번풀이는 직접 생각해내신거에요??
행렬문제 ㄷ번 잘 이해가 안가요....
넵.. 혹시 답에도 똑같이 있나요? 왠지 그럴 가능성도 클 거 같고요..ㅎㅎ
위에 ㄷ은 ㄱ이용하면 되는데, ㄱ에다가 X=A+B대입하면
A+B의 역행렬이 존재하면, A^-1 (A+B) B^-1 의 역행렬도 존재! 라는 명제를 얻습니다. 그런데 A^-1 (A+B) B^-1 = (E+ A^-1 B) B^-1= B^-1 +A^-1이니까, B^-1 + A^-1 의 역행렬도 존재한다는 것과 동치이지요. 그래서 ㄷ참이고요.
위에문제 엄청간단하게풀어드림
ㄱ은 세행렬 각각역행렬존재하므로참
ㄴ은 전개해보면 참
ㄷ은 ㄴ을이용 일단 좌변 전개하면 A역+B역 이나옴(폰이라서양해좀요)
ㄷ의전제때문에 우변이 역행렬존재함을알수있음 그러므로 ㄷ도참
감사합니다...이해됐어요!
아래문제 ㄴ은... 도형의 넓이 비교로 생각해주세요
1/2f(0)은 높이f(0), 밑변 1인 삼각형의 넓이
g(1)은 (0,1)범위에서의 f(x)의 적분값
f(0)은 높이 f(0),밑변1인 사각형의넓이
주어진 그림에 직접 그려보시면 이해가 빠르실거예요
ㄷ은... g(x)의 그래프를 이용해서 ㄴ과 비슷한 식으로
1/2f(0)은...
g(x)에서 x에 접하는 직선의방정식을 그리구요 y=f(0)x 이런식으로 나올겁니다
저 방정식은(1.f(0)) 을 지나겠죠?
밑변1, 높이f(0)인 삼각형의넓이가 바로 1/2f(0)이네요...
그러니 왼쪽에 주어진 적분값과 그 삼각형의 넓이를 비교해보시면 되요
기출에서 봤던 논리 같은데 찾아보려하니 어디에 있는지 못찾겠네요 ㅎㅎ;;;
2009년이엇던거 같아요. 감사합니다