(05' 6평, 09' 7월교육청) 미분 2문제 풀이 비교해주세요
게시글 주소: https://orbi.kr/0002645686
마플 문과 미통기 344, 345번문젠데요ㅠ
05 6평) 두 함수 f(x)=5x^3-10x^2+k, g(x)=5x^2+2가 있다. {xㅣ0<x<3}에서 부등식 f(x)>= g(x)가 성립하도록 하는 상수 k의 최솟값을 구하시오.[4점]
09 7교육청) 모든 실수 x에 대하여 부등식 3x^4 -8x^3 -6x^2+24x >= k-2sin[파이/2]x가 성립할 때, 상수 k의 최댓값은? [3점]
한번 종이에 써서 보시면 더 눈에 잘 보이실듯 해요 ㅠㅠ
풀이가요
두번째 문제의 경우 부등호 왼쪽 식의 최솟값>= 오른쪽 식의 최댓값 으로 해서
-19 >= k+2 으로 풀었거든요..
그런데 첫번째 문제는 그렇게 해서 풀으려고 했는데 (f의 최소, g의 최대) 그러면 답이 안나오구요
g를 좌로 옮겨서 f(x)-g(x)를 한 후 극대, 극소 따져서 풀어야지 답인 22가 나오더라구요 ㅠ 왜 그런건가요?
두 문제가 왜 풀이가 다른건지...설명좀해주세요~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저 특정해보셈 2
-
그때는 다니기가 그렇게 싫었는데 지금은 의지도 부족하고 돈도 없고 걍 자살마렵다...
-
?
-
아 ㅈ됐네 6
새터에서 귀엽다는 말 많이 들었는데 존못한남이어서 비꼼당한거냐? 시발
-
새벽기념 2
아무것도 안하기
-
매일못생긴도태남이라서
-
헤어지기로 했는데 이유 중 하나가 최근에 여행 갔을 때 내가 공황발작 크게 한 적...
-
합동 ㅇㅈ 0
재밌다
-
추가모집 외대글 1명 뽑는 과인데 5번까지는 빠질까요ㅠㅠㅠ 너무 절실해요ㅠㅠ 제발
-
와.. 젠지 클래식이던 시절이 있었는데.. 브리온 젠지전 복기라길래 멤버를 봤는데 미드가 비디디 ㄷ
-
성별 바뀌어도 똑같을듯 얼굴이 짱이다
-
현재 김승리쌤 커리를 타고 있는데 유독 문학부분에서 많이 틀려서 문학 유명한...
-
이시기에 개정 시발점으로 다시 시작해도 괜찮을까요? 작수 수학등급은 처참합니다 어3겨우 푸는정도에요
-
저는 나중에 5
얼굴 막 이쁘고 인싸 성격에 능력 있는 여자도 좋긴한데 것보다는 막 못생긴건 좀...
-
서울대 영어 12
거의 안 보나요? 3만 넘으면 된다는 말이 있던데
-
안녕하세요 이번에 무휴학 반수를 할 예정인 학생입니다 문과라서 1학기는 국어 수학...
-
너무야함
-
내가 현역시절에는 여긴 뭐지... 왜 공부열심히 하는 뉴비 배척하냐 이런 생각이...
-
국어는 실력 오르는게 눈에 안보이니깐.. 초조해져....ㅜㅜㅠ
-
나도 사랑해줘 11
난 모두 사랑해
-
아침먹기 5
맛잇네
-
저격메타->페북시절느낌메타->사랑메타 매일매일 분위기가 바뀜뇨
-
이 향은 여자친구랑 같이 쓰시면 좋아요~아 네^^
-
김현우 라이브 0
지금 대기 있나요?
-
맨날 싸우더니 따뜻하다
-
대학도 붙었고 이제 떠나갈 때가 온듯
-
나 사랑해주면 12
저도 님들 사랑해드릴게여
-
보기좋네요
-
나만 이거 볼때마다 개웃김? 난 둘 다 안 좋아하는데 이 사진 어디 올라오면 양쪽...
-
위협적인물도 2
아 내가봐도 사랑하기 존나빡세노 가던길가십쇼
-
ㅇ
-
법선벡터 외적안하고 찾기 and 평면 연장하기 +OA에 수직인 평면이 평면...
-
내가 해주는거 말고 받고 싶어
-
그 카리나 말고 나 나 나라고
-
수보구도 사랑해줘 12
이건 의무야
-
이건 28렙이 맞음
-
이번달 돈을 너무 많이 써서 참는중 뭐 먹지
-
ㅇㅇ
-
welcome 을종배당이자소득세 영혼의 동료 항상 감사합니다 Goat
-
하연도 사랑해주자 12
-
인스타에서 아무사진 긁어오면 절대모를듯
-
에휴
-
나 귀여워해주ㅜ라
-
처음 해보는데 제가 과외 지원서 학생분들께 계속 넣어야지 잡히죠? 학생들이 먼저...
-
지난주에 일 너무 많이해서 3키로 빠짐..
-
취르비 4
우웅
-
공잘 왕잘 0
응응 입니다 에요
일반적으로 두 함수 f, g가
(1) …… f(x) ≥ g(x)
을 만족한다고 해서, 이것이
(2) …… f(x)의 최소값 ≥ g(x)의 최대값
을 의미하지 않습니다. 기하학적으로 생각해보세요. f(x)의 최소값을 m, g(x)의 최대값을 M이라고 할 때, (2)라는 조건을 다시 적어보면
(3) …… f(x) ≥ m ≥ M ≥ g(x)
가 됩니다. 이 말은, 임의의 m ≥ c ≥ M 를 만족하는 실수 c에 대하여 y = f(x) 의 그래프와 y = g(x)의 그래프 사이에 y = c 라는, x축에 평행한 직선이 끼어있다는 것을 의미합니다. 그런데 이런 일은 (1)이 성립한다고 해서 항상 일어나는 일이 아닙니다.
예를 들어서, [-2012, 2012] 에서 두 함수 f(x) = x² + 1 과 g(x) = x² 은 항상 f(x) ≥ g(x) 를 만족하지만, f(x)의 최소값 1 과 g(x)의 최대값 2012² 사이에는 당연히 (3)과 같은 관계가 성립하지 않습니다. 그리고 그래프를 통해서도 당연히 확인할 수 있고요.
결국 두 번째 문제의 풀이는 '우연히 맞아떨어진' 풀이일 뿐이지요. 왜냐하면 y = 3x^4 - 8x^3 - 6x^2 + 24x 가 최소가 되는 지점인 x = -1 에서 '너무나 우연하게도' y = k - 2sin(π/x2) 가 최대값을 갖고, (3)의 상황으로 환원되거든요.
아...ㅜㅜ진짜 감사합니다. ㅠㅠ완전 '아~~'이러면서 봤네요
그런데요 그러면 2번째 문제인 마플 345번 해설지에 보면요..(문과 미통기)
" f(x) = 3x^4 - 8x^3 - 6x^2 + 24x,
g(x)= k - 2sin(π/x2)라 하면 f(x)의 최솟값이 g(x)의 최댓값보다 크면 항상 성립한다. f'(x)=12(x-2)(x-1)(x+1)이므로, x=-1,1,2에서 극값을 가지므로, 증감표를 나타내면 ~~~, 따라서 함수 f(x)는 x=-1에서 극솟값 f(-1)=-19, x=1에서 극댓값 f(1)=13, x=2에서 극솟값 f(2)=8을 가지므로 최솟값은 f(-1)=-19이다.
g(x)는 ~~(싸인함수 범위)~~, g(-1)=k+2는 g(x)의 최댓값이다.
따라서 k+2<=-19이므로 k의 최댓값은 -21.
라고 되어있는데요... 그럼 이 풀이에는 오류가 있는 건가요??
정당화는 가능하지만, 논증 자체에는 오류가 있지요.
주어진 논증이 타당하지 않음을 확인해보려면, 문제를 조금만 바꿔봐도 됩니다. 예를 들어 g(x)가 g(x) = k + 2sin(π/x2) 로 주어졌다면, 더 이상 저런 논리가 성립하지 않고, 실제로 k = -17 이 가능한 k값의 최대값이 됩니다.
네 그렇군요!!!!!!