2018햑년도 RISE 모의고사

수학 가형 4월 정답표

1	(2)	2	(4)	3	(3)	4	(5)	5	(1)
6	(5)	7	(4)	8	(1)	9	(4)	10	(3)
11	(2)	12	(2)	13	(2)	14	(5)	15	(3)
16	(4)	17	(4)	18	(5)	19	(3)	20	(3)
21	(4)	22	15	23	20	24	8	25	6
26	82	27	9	28	79	29	72	30	10

14. 답 : (5)

문제에서 구하는 상황은
"참가자가 사회자가 선택한 '상자'를 맞출 확 률"이다.

참가자가 상자 A 로 정답을 맞출 확률은

사회자가 상자 A 에서 빨간 공을 꺼내고, 동 시에 참가자가 상자 A 를 선택해야 하므로

$$
\frac{{ }_{3} \mathrm{C}_{1}}{{ }_{4} \mathrm{C}_{1}} \times \frac{{ }_{1} \mathrm{C}_{1}}{{ }_{2} \mathrm{C}_{1}}
$$

참가자가 상자 B 로 정답을 맞출 확률은
사회자가 상자 B 에서 흰 공을 꺼내고, 동시 에 참가자가 상자 B 를 선택해야 하므로

$$
\frac{{ }_{2} \mathrm{C}_{1}}{{ }_{3} \mathrm{C}_{1}} \times \frac{{ }_{1} \mathrm{C}_{1}}{{ }_{2} \mathrm{C}_{1}}
$$

두 경우는 서로 다른 사건이므로 구하는 확률은
$\frac{3}{4} \times \frac{1}{2}+\frac{2}{3} \times \frac{1}{2}=\frac{3}{8}+\frac{1}{3}=\frac{17}{24}$
18. 답 : (5)

쌍곡선의 방정식이 $\frac{x^{2}}{9}-\frac{y^{2}}{b^{2}}=1$ 이므로
편의상 제 1 사분면의 그래프를 그려내면 아래 와 같은 상황이 된다.

두 직선 l, m 의 교점을 H , 각 FOH 의 크기 를 θ 라 하면

문제의 조건에서 $\overline{\mathrm{OH}}=2 \sqrt{5}$
$\overline{\mathrm{OF}}=\mathrm{c}$
$\therefore \cos \theta=\frac{2 \sqrt{5}}{c}$

이때 쌍곡선의 방정식에서 $9+b^{2}=c^{2}$ 이고 제 1 사분면에서의 점근선의 방정식이 $y=\frac{b}{3} x$ 이므로 $\tan 2 \theta=\frac{b}{3}$

따라서 삼각함수의 덧셈정리에 의해
$\cos 2 \theta=\frac{40}{c^{2}}-1$ 이고
$1+\tan ^{2} 2 \theta=\sec ^{2} 2 \theta$ 로부터
$\sec ^{2} 2 \theta=1+\frac{b^{2}}{9}=\frac{9+b^{2}}{9}=\frac{c^{2}}{9}$
$\therefore \frac{3}{c}=\frac{40}{c^{2}}-1(\because c>0)$
$\therefore c=5, b=4$

구하는 답은 9
21. 답: (4)
$g(x)$ 의 식을 정리하기 위해 $x-t=s$ 라 두면 치환적분법에 의해
$g(x)=\int_{x}^{x+1} t e^{-t} f(x-t) d t$
$=\int_{-1}^{0}(x-s) e^{-(x-s)} f(s) d s$
$=x e^{-x} \int_{-1}^{0} e^{s} f(s) d s-e^{-x} \int_{-1}^{0} s e^{s} f(s) d s$ 이고

부분적분법에 의해
$\int_{-1}^{0} e^{s} f(s) d s=\left[e^{s} f(s)\right]_{-1}^{0}-\int_{-1}^{0} e^{s} f^{\prime}(s) d s$ $\int_{-1}^{0}\left\{s e^{s} \times f(s)\right\} d s$
$=\left[(s-1) e^{s} f(s)\right]_{-1}^{0}-\int_{-1}^{0}(s-1) e^{s} f^{\prime}(s) d s$

조건 (가)에서 $f(0)=f(-1)=0$ 이고 조건 (나)에서
$\int_{-1}^{0} e^{s} f^{\prime}(s) d s=-e, \int_{-1}^{0} s e^{s} f^{\prime}(s) d s=-e$
이므로
$g(x)=x e^{-x+1}$ 이다.

함수 $h(x)=\frac{g(x)}{x-k}$ 가 $x<k$ 에서 극값을 갖지 않으므로
$h^{\prime}(x)=\frac{\left(e^{-x+1}-x e^{-x+1}\right)(x-k)-x e^{-x+1}}{(x-k)^{2}}$
$=\frac{\left(-x^{2}+k x-k\right) e^{-x+1}}{(x-k)^{2}}$ 이고
$e^{-x+1}>0$ 에서
$-x^{2}+k x-k=0$ 인 x 가 $x<k$ 에서 존재하지 않으면 된다.

따라서 두 가지 상황이 존재하게 된다.
(i) $D=k^{2}-4 k \leq 0$ 일 때
x 의 범위에 관계 없이 항상 $h^{\prime}(x)<0$ 이므로 $0 \leq k \leq 4$
(ii) $D=k^{2}-4 k>0$ 일 때

따라서 $h^{\prime}(x)=0$ 인 x 가 $x<k$ 에서 존재하지
않기 위한 k 의 범위는
$k<\frac{k}{2},-k^{2}+k \times k-k \leq 0$ 에서
$k<0, k \geq 0$ 이므로
모순.

따라서 (i)에서의 $0 \leq k \leq 4$ 가 문제의 상황 을 모두 만족시키는 실수 k 의 범위이고

이때 k 의 최댓값은 4
26. 답: 82

아이템 강화를 위해 사용하는 돌 A 의 개수를 $a, \mathrm{~B}$ 의 개수를 b, C 의 개수를 c 라 하면

구하는 경우의 수는
$a+b+c=18 \quad(0 \leq a, b, c \leq 10)$
인 정수 순서쌍 (a, b, c) 의 개수이다.

따라서 여사건을 활용하기 위해 전체 사건을 $a+b+c=18(a \geq 0, b \geq 0, c \geq 0)$ 이라 하 고, 이 경우에서 적어도 한 종류의 돌을 11 개 이상 쓰는 경우의 수를 빼주면 된다.

전체 경우의 수는 ${ }_{3} \mathrm{H}_{18}={ }_{20} \mathrm{C}_{2}=190$ 이고

두 종류 이상의 돌을 11 개 이상 쓸 순 없으 므로
한 종류의 돌을 11 개 이상 쓰는 경우의 수를 구하려면, 예를 들어 a 를 11 개 이상 쓴다면 $b+c \leq 7(b \geq 0, c \geq 0)$ 인
정수 순서쌍 (b, c) 의 개수를 구하면 된다.

이때 $b+c+d=7(b \geq 0, c \geq 0, d \geq 0)$ 이라 두면 d 의 값에 따라 $b+c \leq 7$ 인 모든 경우가 존재하므로
$b+c \leq 7(b \geq 0, c \geq 0)$ 인
정수 순서쌍 (b, c) 의 개수는
${ }_{3} \mathrm{H}_{7}={ }_{9} \mathrm{C}_{2}=36$ 이고
11 개 이상 쓸 돌을 구하는 경우의 수가 ${ }_{3} \mathrm{C}_{1}$ 이므로

구하는 전체 경우의 수는
$190-3 \times 36=82$ 이다.
29. 답: 72

점 P 에서 x 축에 내린 수선의 발을 H 이라 하
$\xrightarrow[\mathrm{AP}]{\text { 면, 조건 (가)에서 }}$
$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{AB}}=(\overrightarrow{\mathrm{AH}}+\overrightarrow{\mathrm{HP}}) \cdot \overrightarrow{\mathrm{AB}}$ 이고
$\overrightarrow{\mathrm{HP}} \perp \overrightarrow{\mathrm{AB}}$ 이므로
$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{AB}}=4,|\overrightarrow{\mathrm{AB}}|=4$ 에서 $\mathrm{H}(2,0)$ 이다.
이때 조건 (가)에서
$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{AQ}} \cdot \overrightarrow{\mathrm{AB}}=4$ 이므로
점 Q 에서 x 축에 내린 수선의 발 또한 H 이 다.

따라서 아래의 두 가지 상황이 존재한다.

(i) $Q=Q_{1}$ 일 때

문제에서 서로 다른 세 점 $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ 이라 했 으므로 조건 (나)에서 피타고라스의 정리에 의해 $0 \leq q<p \leq 2$ 이고

조건 (다)에서
$\overrightarrow{\mathrm{BQ}_{1}}=\frac{1}{3} \overrightarrow{\mathrm{BA}}+\frac{1}{3} \overrightarrow{\mathrm{BR}}+\frac{1}{3} \overrightarrow{\mathrm{BP}}$
$\overrightarrow{\mathrm{BR}}=3 \overrightarrow{\mathrm{BQ}_{1}}-\overrightarrow{\mathrm{BP}}-\overrightarrow{\mathrm{BA}}$

$$
=\overrightarrow{\mathrm{BQ}_{1}}+\overrightarrow{\mathrm{AQ}_{1}}+\overrightarrow{\mathrm{PQ}_{1}} \text { 이므로 }
$$

$|\overrightarrow{\mathrm{BR}}|^{2}=\left|\overrightarrow{\mathrm{BQ}_{1}}\right|^{2}+\left|\overrightarrow{\mathrm{AQ}_{1}}\right|^{2}+\left|\overrightarrow{\mathrm{PQ}_{1}}\right|^{2}$ $+2 \overrightarrow{\mathrm{BQ}_{1}} \cdot \overrightarrow{\mathrm{AQ}_{1}}+2 \overrightarrow{\mathrm{AQ}_{1}} \cdot \overrightarrow{\mathrm{PQ}_{1}}+2 \overrightarrow{\mathrm{PQ}_{1}} \cdot \overrightarrow{\mathrm{BQ}_{1}}$ 에서
$\overrightarrow{\mathrm{BQ}_{1}} \cdot \overrightarrow{\mathrm{AQ}_{1}}=\left(\overrightarrow{\mathrm{BH}}+\overrightarrow{\mathrm{HQ}_{1}}\right) \cdot\left(\overrightarrow{\mathrm{AH}}+\overrightarrow{\mathrm{HQ}_{1}}\right)$
$\overrightarrow{\mathrm{AQ}_{1}} \cdot \overrightarrow{\mathrm{PQ}_{1}}=\left(\overrightarrow{\mathrm{AH}}+\overrightarrow{\mathrm{HQ}_{1}}\right) \cdot \overrightarrow{\mathrm{PQ}_{1}}$ $\overrightarrow{\mathrm{PQ}_{1}} \cdot \overrightarrow{\mathrm{BQ}_{1}}=\overrightarrow{\mathrm{PQ}_{1}} \cdot\left(\overrightarrow{\mathrm{BH}}+\overrightarrow{\mathrm{HQ}_{1}}\right)$ 이므로

k^{2} 의 최댓값은 없고,
최솟값은 $p=3 q \neq 0$ 일 때 0 이다.
(ii) $Q=Q_{2}$ 일 때

문제에서 서로 다른 세 점 $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ 이라 했 으므로 조건 (나)에서 피타고라스의 정리에 의해 $0 \leq q \leq p \leq 2$ 이고

조건 (다)에서
$\overrightarrow{\mathrm{BQ}_{2}}=\frac{1}{3} \overrightarrow{\mathrm{BA}}+\frac{1}{3} \overrightarrow{\mathrm{BR}}+\frac{1}{3} \overrightarrow{\mathrm{BP}}$
$\overrightarrow{\mathrm{BR}}=3 \overrightarrow{\mathrm{BQ}_{2}}-\overrightarrow{\mathrm{BP}}-\overrightarrow{\mathrm{BA}}$

$$
=\overrightarrow{\mathrm{BQ}_{2}}+\overrightarrow{\mathrm{AQ}_{2}}+\overrightarrow{\mathrm{PQ}_{2}} \text { 이므로 }
$$

$|\overrightarrow{\mathrm{BR}}|^{2}=\left|\overrightarrow{\mathrm{BQ}_{2}}\right|^{2}+\left|\overrightarrow{\mathrm{AQ}_{2}}\right|^{2}+\left|\overrightarrow{\mathrm{PQ}_{2}}\right|^{2}$
$+2 \overrightarrow{\mathrm{BQ}_{2}} \cdot \overrightarrow{\mathrm{AQ}_{2}}+2 \overrightarrow{\mathrm{AQ}_{2}} \cdot \overrightarrow{\mathrm{PQ}_{2}}+2 \overrightarrow{\mathrm{PQ}_{2}} \cdot \overrightarrow{\mathrm{BQ}_{2}}$
에서
$\overrightarrow{\mathrm{BQ}_{2}} \cdot \overrightarrow{\mathrm{AQ}_{2}}=\left(\overrightarrow{\mathrm{BH}}+\overrightarrow{\mathrm{HQ}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{AH}}+\overrightarrow{\mathrm{HQ}_{2}}\right)$
$\overrightarrow{\mathrm{AQ}_{2}} \cdot \overrightarrow{\mathrm{PQ}_{2}}=\left(\overrightarrow{\mathrm{AH}}+\overrightarrow{\mathrm{HQ}_{2}}\right) \cdot \overrightarrow{\mathrm{PQ}_{2}}$
$\overrightarrow{\mathrm{PQ}_{2}} \cdot \overrightarrow{\mathrm{BQ}_{2}}=\overrightarrow{\mathrm{PQ}_{2}} \cdot\left(\overrightarrow{\mathrm{BH}}+\overrightarrow{\mathrm{HQ}_{2}}\right)$ 이므로
$|\overrightarrow{\mathrm{BR}}|^{2}=\left(9+q^{2}\right)+\left(1+q^{2}\right)+(p+q)^{2}$
$+2 \times\left(1 \times 3 \times 1+q^{2}\right)+2 \times q \times(p+q) \times 1$
$+2 \times(p+q) \times q \times 1$
$=(p+3 q)^{2}+4$ 이다.
이때 $0 \leq q \leq p \leq 2$ 이므로 $p+3 q=k$ 라 하면 $q=-\frac{1}{3} p+\frac{1}{3} k$ 에서
구하는 상황은 k^{2} 의 최대와 최소이므로
아래와 같은 부등식의 영역에서
(실선은 포함)

k^{2} 의 최댓값은 $p=q=2$ 일 때 64 ,
최솟값은 $p=q=0$ 일 때 0 이지만 이때 그림 에서 $\mathrm{P}=\mathrm{Q}=\mathrm{H}$ 이므로 서로 다른 세 점이라 는 조건에 모순이다.

따라서 구하는 $|\overrightarrow{\mathrm{BR}}|^{2}$ 의 최댓값은 (ii)에서 68 , 최솟값은 (i)에서 4 이다.
$\therefore M+m=72$
30. 답 : 10

조건 (나)를 통해 사차함수 $f(x)$ 를 구하자.
문제에서 $f(0)=1$,
조건 (가)에서 $f(1)=0$ 이므로
$\lim _{x \rightarrow 0} \frac{f(x+1) \ln f(x)}{x^{2}}$
$=\lim _{x \rightarrow 0} \frac{f(x+1)}{x} \times \frac{\ln f(x)}{x}$
$=\lim _{x \rightarrow 0} \frac{f(x+1)-f(1)}{(x+1)-1} \times \frac{\ln \{1+f(x)-1\}}{f(x)-1}$
$\times \frac{f(x)-f(0)}{x-0}$ 에서
$f(x)$ 는 실수 전체에서 미분가능하고
$f(0)=1$ 에서 $\lim _{x \rightarrow 0} f(x)=1$ 이므로
$\lim _{x \rightarrow 0} \frac{f(x+1)-f(1)}{(x+1)-1}, \lim _{x \rightarrow 0} \frac{\ln \{1+f(x)-1\}}{f(x)-1}$,
$\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$ 모두 수렴한다.
따라서
$\lim _{x \rightarrow 0} \frac{f(x+1) \ln f(x)}{x^{2}}=f^{\prime}(1) \times 1 \times f^{\prime}(0)=0$
이고
조건 (가)에서 $f^{\prime}(0)=-1$ 이므로
$f^{\prime}(1)=0$ 이다.
최고차항의 계수가 k 인 사차함수 $f(x)$ 를
$f(x)=(x-1)^{2}\left(k x^{2}+l x+m\right)$ 이라 하면 $f(0)=1, f^{\prime}(0)=-1$ 에서
$l=1, m=1$
$\therefore f(x)=(x-1)^{2}\left(k x^{2}+x+1\right)$ 이다.

따라서 $g(x)=\left(k x^{2}+x+1\right) e^{-x}$ 이다.
조건 (다)에서
구간 $[a, \infty)$ 에 속하는 모든 실수 x 에 대하
여 $g(x) \leq g(0)$ 이 성립하려면
$x \geq a$ 에서 함수 $f(x)$ 의 최댓값이 $g(0)$ 이어야
하고
최대, 최소의 정리에 의해
함수 $g(x)$ 의 최댓값은 구간의 끝값 또는 극 대이어야 하는데
조건에서 $a<0$ 이므로
$g(0)$ 은 최댓값이자 극댓값이다.
따라서 $g(x)$ 가 $x=0$ 에서 극댓값을 가져야 하므로
$g^{\prime}(x)=-k x\left(x-\frac{2 k-1}{k}\right) e^{-x}$ 에서 k 는 양수,
$g^{\prime}(x)=0$ 인 x 값은 0 또는 $\frac{2 k-1}{k}$ 이므로
그림과 같은 상황이어야 $g(x)$ 가 $x=0$ 에서 극대이다.

따라서 $\frac{2 k-1}{k}<0$ 에서 $0<k<\frac{1}{2}$ 이다.
$\lim _{x \rightarrow \infty} g(x)=0$ 에서
함수 $y=g(x)$ 의 그래프는 아래와 같다.
(아래 그래프에서 극솟값과 0 과의 대소 관계 는 문제의 상황에 영향을 주지 않는다.)

따라서 $x \geq a$ 에서 함수 $y=g(x)$ 의 최댓값이 $g(0)$ 이기 위한 a 가 최소일 때는
$g(a)=1$ 일 때이다.

이때 $\left(k a^{2}+a+1\right) e^{-a}=1$ 에서
$k=\frac{e^{a}-a-1}{a^{2}}$ 이고
이때의 a 값이 $a=h(k)$ 이므로
$h^{-1}(a)=k$
$\therefore h^{-1}(a)=\frac{e^{a}-a-1}{a^{2}}=F(a)$ 라 하면
$F(h(k))=k$ 에서 역함수의 미분법에 의해
$F^{\prime}(h(k)) \times h^{\prime}(k)=1$
$F^{\prime}(a)=\frac{\left(e^{a}-1\right) a^{2}-\left(e^{a}-a-1\right) \times 2 a}{a^{4}}$
$=\frac{(a-2) e^{a}+a+2}{a^{3}}$
$\therefore h^{\prime}(k)=\frac{1}{F^{\prime}(h(k))}$ 에서
$a=-1$ 일 때 $k=\frac{e^{-1}-(-1)-1}{(-1)^{2}}=\frac{1}{e}$ 이고
$h^{\prime}\left(\frac{1}{e}\right)=\frac{1}{F^{\prime}(-1)}=\frac{-1}{(-3) e^{-1}+1}$ 이므로
$\frac{1}{h^{\prime}\left(\frac{1}{e}\right)}=\frac{3}{e}-1$ 에서 $p=3, q=-1$

따라서 구하는 값은 10 이다.

