(수정) 자작 모의고사 1회 문제&해설
게시글 주소: https://orbi.kr/00068086857
4점 모의고사 1회 - 수정본2.pdf
4점 모의고사 1회 - 해설.pdf
오류가 있어서 고친 다음 다시 게시합니다....ㅠㅠ
혼자 급하게 만든거라 쉽지 않네요
이전 글에도 말했지만, 쓰는 건 자유입니다만 이상한데다가 뿌리지만 말아주세요
오류 제보는 환영입니다
사실 수정 엄청 많이 해서 오류는 별로 없을거에요
+ 답 개수는 일부러 안 맞췄습니다. 연속으로 나오거나 어떤 선지가 안나와도 그냥 푼게 맞은겁니다
++ 바보도 아니고... 잡담태그를 달았었네요..
0 XDK (+10,050)
-
10,000
-
50
-
무물 16
이거 한 번 해보니까. 재밌네여
-
사실 수능을 못봐도 괜찮다면? 사실 내가 좋은 대학에 못가도 괜찮다면? 사실 내가...
-
그냥 자연재해급 대참사 대비해서 가천대 1개 논술로 넣었는데 수학은 미적 1턱~2중...
-
생윤 유불도 0
유불도 욕구에 대해 뭐라고 말하나여 셋 다 절제해야한다고 본 건가요, 제거해여한다고...
-
영어 아예노베들이 듣는 강의인가요? 6~7등급?
-
쌈무나보고가라 3
-
여자친구랑(없음) 카톡하다 잠들고 싶은 밤
-
근데 올해 9모 보면 물수능도 다른 의미로 트라우마일듯 황밸수능 원해용...
-
어쩐지 요즘 안 보이시더라.. 이제 알았네..
-
르크
-
맛이 없냐 비싸기만 하고 ㅡㅡ 몇만원은 줘야 제대로 된거 먹겠네 아무리 물가가...
-
대학
-
확통이고 지금 기출 풀고 있는데 n티켓 사서 푸는 거 어케 생각하시나요 수능 때까지...
-
https://youtu.be/uOnjuIb1TWY?si=mkhq1HA5Mb5O3b9...
-
괜찮음
-
로드리 비니시우스
-
어차피 그럴 가능성은 없을 거지만
-
어디감
-
아직 정규 남았고 선공개 곡임 그동안 지디가 선공개때는 하고싶은거 막던졌음 예를들면...
-
즂댓네.
-
내가 의대갈게
-
저는 군대 다녀온 신촌 y대는 아니고 같은 구역에 있는 s대 다니고 있습니다 제...
-
꿈도 다 좋은 꿈만 꾸고 이번달 운세 개좋은데 올해 진짜 수능판 뜨냐..?
-
이 짓거리 안하고 있었겠지
-
제가 평소에 소화도 잘 안되고 뭐 먹으면 더부룩한데 식곤증도 엄청 심해서 영어 모고...
-
22번찍는거 엄마한테 물어봐야겠노
-
메디컬 집착 4
나도 하는중 크헤헤
-
기숙사 룸메 선택할수잇으면 얌전한애말고 좀 친구많아보이는애랑 하셈 0
이런애들이 놀러다니느라 바빠서 방 안들어옴 친구없고 술안마시고 본가도안가고 방에만...
-
고딩들은 음 그래 나도 일단 들어가서 열심히 하면 전과/복전 가능할거야! 이렇게...
-
대부분 대학생들이 남는시간에 알바처럼 하는거?? 막 한사람이 하루종일 붙어있고 그래야하는건 아니겠지
-
자신있는 과목은 수능때 실수할까봐 불안해죽갰고 영어는 공부한 날이 손에 꼽음 아 진짜ㅏ진짜 ㅈ댔다
-
대충 2주 전부터 1일 1실모 하고 있는데 지구는 38~47 나와요 실수 많이하면...
-
차이점있나요?
-
예전 비문학 초고난도 시절로 돌아가는거임?
-
또 나를 찾지 말고 살아가라
-
제 아이디 입력해주시면 추천해주신 분과 제게 모두 만원권이 증정된다고 합니당 아이디...
-
내맘대로 자대고 4
쭉 긋고 쓰지
-
예쁜여자vs고능아의대생 10
다시 태어나면 뭘로 태어나고 싶음? 후자는 와꾸 빻음
-
헬스터디보면 확통은 맨날 거의다맞추던데 재호가고수인거임 확통이쉬운거임 둘다인건가 신기하네
-
여기있는 현역 혹은 그 이하들이 나보다 잘한다는걸 깨달았을 때
-
수능 국어 기본기 공부는 매3시리즈 국어가 좋음? 원픽이 좋음?
-
ㅇㅇ 연계 독서 중에 그게 제일 꽃같은 친구 같음.
-
양치기소년이 되.
-
국어는 강기분 지금 하고 있구요 수학은 학원+인강으로 병행 합니다 영어 또한...
-
나 이래도 괜찮은걸까
-
2주동안 자살할게 라고 말함 zzzz ???: 이거 비문학이네
-
수과탐에 투자하려는데 주말에 문학 좀 보고
-
저기 지방 ㅈ반고 가면 유학? 의대? 이런 얘기 나오지도 않음
화이팅입니다
필적 확인란 폼 미쳤다;;
문제 대충 슥 보기만 했는데 어려워 보이는군요 자고 일어나서 풀어봐야겠슴다
브릿지다
15와 22를 곁들인
작수보다 어렵나요?!!
아녀
마싯게 풀겟스빈다~
여기서 x=B에서 미가로 만드는 것도 가능하지
않을까요? 해설처럼하면 답 나오는 것 같긴한데
아예 h(x)개형을 저거말고 다른거로 해도
될 것 같아서요…
절댓값 함수는 미분 불가능점에서 항상
좌우 미분계수가 절댓값이 같고 부호가 다르기 때문에 양쪽 미분계수가 모두 양수인 β에서는 미분 가능하게 만들 수 없어요
그게 곱함수일 때는 맞는데
빼는 거면 절댓값 함수의 우미분계수 좌미분계수
차이가 g(x)의 미분불가점 좌우 차이랑
같으면 되지않을까요…
제가 뭔가 착각하는거일수도 ㅋㅋㅋㅋ
심심해서 써봤습니다…
ㅎㅎ
음 다시 보니깐 이것도 가능성이 있는거 같기도 하네요..?
조건을 조금 수정해야되겠네요
기존 답고 같으려면 이렇게 바꾸면 될거 같습니다
22번에서 f’(a)-h’(a)가 0이 돼야하는 건가요 그냥 상수 k여서 f’(a)-h(’a)=m+h’(a)=k여도 미가 아닌가요
아니요 안됩니다!
식을 보시면 |h(x)|의 a 에서 도함수는
오른쪽에서 양수, 왼쪽에서 음수가 나와야하는데
만약 f'(α)+|h'(α)|=k 라면,
m-|h'(α)|=-k 가 돼서 미분 불가능해집니다
왜 f’(a)=-m이 돼야하는 건가요
시간이 좀 지났긴한데.. 해설지 오류있는거 같아서요!
14번 답 5번인거 같아요